961 resultados para Alpha(2)delta Subunit
Resumo:
Integrins are a family of transmembrane adhesion receptors that might transduce signals from the extracellular matrix into the inside of cells after ligand binding. In order to investigate whether beta3 integrins expressed in tumor cells might mediate such outside-in signaling, human MDA-MB-231 breast cancer cells that were stably transfected with either beta3 integrin or mock-transfected were investigated in a matrigel degradation assay and a grafting experiment was performed on the developing chicken chorioallantoic membrane (CAM). After cultivation on matrigel for time periods between one and five days, more matrigel was digested in the wells in which beta3 integrin expressing cells were incubated than in wells of mock-transfected cells. Furthermore, extracts of beta3 integrin expressing cells contained higher levels of MMP-2 protein as determined by immunoblotting and more MMP-2 associated gelatinase activity as detected by zymography than extracts of mock-transfected cells. Matrigel degradation and gelatinase activity as well as MMP-2 expression were elevated when beta3 integrin expressing cells were incubated in the presence of the RGD peptide (mimicking an integrin ligand). After grafting on 10 day-old embryonic chicken CAM for three to five days, beta3 integrin expressing cells assembled in spheroids showed higher rates of spreading on the CAM surface and CAM invasion as well as a significant MMP-2 up-regulation compared to mock-transfected cells. The results from the in vivo and in vitro experiments allow the conclusion that the presence of beta3 integrin in MDA-MB-231 breast cancer cells induced an increased MMP-2 expression and activity that might contribute to the enhanced invasive potential observed.
Resumo:
The detailed mechanistic aspects for the final starch digestion process leading to effective alpha-glucogenesis by the 2 mucosal alpha-glucosidases, human sucrase-isomaltase complex (SI) and human maltase-glucoamylase (MGAM), are poorly understood. This is due to the structural complexity and vast variety of starches and their intermediate digestion products, the poorly understood enzyme-substrate interactions occurring during the digestive process, and the limited knowledge of the structure-function properties of SI and MGAM. Here we analyzed the basic catalytic properties of the N-terminal subunit of MGAM (ntMGAM) on the hydrolysis of glucan substrates and compared it with those of human native MGAM isolated by immunochemical methods. In relation to native MGAM, ntMGAM displayed slower activity against maltose to maltopentose (G5) series glucose oligomers, as well as maltodextrins and alpha-limit dextrins, and failed to show the strong substrate inhibitory "brake" effect caused by maltotriose, maltotetrose, and G5 on the native enzyme. In addition, the inhibitory constant for acarbose was 2 orders of magnitude higher for ntMGAM than for native MGAM, suggesting lower affinity and/or fewer binding configurations of the active site in the recombinant enzyme. The results strongly suggested that the C-terminal subunit of MGAM has a greater catalytic efficiency due to a higher affinity for glucan substrates and larger number of binding configurations to its active site. Our results show for the first time, to our knowledge, that the C-terminal subunit of MGAM is responsible for the MGAM peptide's "glucoamylase" activity and is the location of the substrate inhibitory brake. In contrast, the membrane-bound ntMGAM subunit contains the poorly inhibitable "maltase" activity of the internally duplicated enzyme.
Resumo:
To study whether protein kinase C (PKC) isoforms can interact with protein-tyrosine-phosphatases (PTPs) which are connected to the insulin signaling pathway, we co-overexpressed PKC isoforms together with insulin receptor, docking proteins, and the PTPs SHP1 and SHP2 in human embryonic kidney (HEK) 293 cells. After phorbol ester induced activation of PKC isoforms alpha, beta 1, beta 2, and eta, we could show a defined gel mobility shift of SHP2, indicating phosphorylation on serine/threonine residues. This phosphorylation was not dependent on insulin receptor or insulin receptor substrate-1 (IRS-1) overexpression and did not occur for the closely related phosphatase SHP1. Furthermore, PKC phosphorylation of SHP2 was completely blocked by the PKC inhibitor bisindolylmaleimide and was not detectable when SHP2 was co-overexpressed with kinase negative mutants of PKC beta 1 and -beta 2. The phosphorylation also occurred on endogenous SHP2 in Chinese hamster ovary (CHO) cells stably overexpressing PKC beta 2. Using point mutants of SHP2, we identified serine residues 576 and 591 as phosphorylation sites for PKC. However, no change of phosphatase activity by TPA treatment was detected in an in vitro assay. In summary, SHP2 is phosphorylated on serine residues 576 and 591 by PKC isoforms alpha, beta 1, beta 2, and eta.
Resumo:
Tenascins represent a family of extracellular matrix glycoproteins with distinctive expression patterns. Here we have analyzed the most recently described member, tenascin-W, in breast cancer. Mammary tumors isolated from transgenic mice expressing hormone-induced oncogenes reveal tenascin-W in the stroma around lesions with a high likelihood of metastasis. The presence of tenascin-W was correlated with the expression of its putative receptor, alpha8 integrin. HC11 cells derived from normal mammary epithelium do not express alpha8 integrin and fail to cross tenascin-W-coated filters. However, 4T1 mammary carcinoma cells do express alpha8 integrin and their migration is stimulated by tenascin-W. The expression of tenascin-W is induced by BMP-2 but not by TGF-beta1, though the latter is a potent inducer of tenascin-C. The expression of tenascin-W is dependent on p38MAPK and JNK signaling pathways. Since preinflammatory cytokines also act through p38MAPK and JNK signaling pathways, the possible role of TNF-alpha in tenascin-W expression was also examined. TNF-alpha induced the expression of both tenascin-W and tenascin-C, and this induction was p38MAPK- and cyclooxygenase-dependent. Our results show that tenascin-W may be a useful diagnostic marker for breast malignancies, and that the induction of tenascin-W in the tumor stroma may contribute to the invasive behavior of tumor cells.
Resumo:
NA-glycine is an endogenous lipid molecule with analgesic properties, which is structurally similar to the endocannabinoids 2-AG and anandamide but does not interact with cannabinoid receptors. NA-glycine has been suggested to act at the G-protein coupled receptors GPR18 and GPR92. Recently, we have described that NA-glycine can also modulate recombinant α1β2γ2 GABAA receptors. Here we characterize in more detail this modulation and investigate the relationship of its binding site with that of the endocannabinoid 2-AG.
Resumo:
2-arachidonyl glycerol (2-AG) allosterically potentiates GABAA receptors via a binding site located in transmembrane segment M4 of the β2 subunit. Two amino acid residues have been described that are essential for this effect. With the aim to further describe this potential drug target, we performed a cysteine scanning of the entire M4 and part of M3. All four residues in M4 affecting the potentiation here and the two already identified residues locate to the same side of the α-helix. This side is exposed to M3, where further residues were identified. From the fact that the important residues span > 18 Å, we conclude that the hydrophobic tail of the bound 2-AG molecule must be near linear and that the site mainly locates to the inner leaflet but stretches far into the membrane. The influence of the structure of the head group of the ligand molecule on the activity of the molecule was also investigated. We present a model of 2-AG docked to the GABAA receptor.
Resumo:
BACKGROUND Congenital long-QT syndrome (LQTS) is potentially lethal secondary to malignant ventricular arrhythmias and is caused predominantly by mutations in genes that encode cardiac ion channels. Nearly 25% of patients remain without a genetic diagnosis, and genes that encode cardiac channel regulatory proteins represent attractive candidates. Voltage-gated sodium channels have a pore-forming alpha-subunit associated with 1 or more auxiliary beta-subunits. Four different beta-subunits have been described. All are detectable in cardiac tissue, but none have yet been linked to any heritable arrhythmia syndrome. METHODS AND RESULTS We present a case of a 21-month-old Mexican-mestizo female with intermittent 2:1 atrioventricular block and a corrected QT interval of 712 ms. Comprehensive open reading frame/splice mutational analysis of the 9 established LQTS-susceptibility genes proved negative, and complete mutational analysis of the 4 Na(vbeta)-subunits revealed a L179F (C535T) missense mutation in SCN4B that cosegregated properly throughout a 3-generation pedigree and was absent in 800 reference alleles. After this discovery, SCN4B was analyzed in 262 genotype-negative LQTS patients (96% white), but no further mutations were found. L179F was engineered by site-directed mutagenesis and heterologously expressed in HEK293 cells that contained the stably expressed SCN5A-encoded sodium channel alpha-subunit (hNa(V)1.5). Compared with the wild-type, L179F-beta4 caused an 8-fold (compared with SCN5A alone) and 3-fold (compared with SCN5A + WT-beta4) increase in late sodium current consistent with the molecular/electrophysiological phenotype previously shown for LQTS-associated mutations. CONCLUSIONS We provide the seminal report of SCN4B-encoded Na(vbeta)4 as a novel LQT3-susceptibility gene.
Resumo:
Propionyl-coenzyme A carboxylase (PCC), a mitochondrial biotin-dependent enzyme, is essential for the catabolism of the amino acids Thr, Val, Ile and Met, cholesterol and fatty acids with an odd number of carbon atoms. Deficiencies in PCC activity in humans are linked to the disease propionic acidaemia, an autosomal recessive disorder that can be fatal in infants. The holoenzyme of PCC is an alpha(6)beta(6) dodecamer, with a molecular mass of 750 kDa. The alpha-subunit contains the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains, whereas the beta-subunit supplies the carboxyltransferase (CT) activity. Here we report the crystal structure at 3.2-A resolution of a bacterial PCC alpha(6)beta(6) holoenzyme as well as cryo-electron microscopy (cryo-EM) reconstruction at 15-A resolution demonstrating a similar structure for human PCC. The structure defines the overall architecture of PCC and reveals unexpectedly that the alpha-subunits are arranged as monomers in the holoenzyme, decorating a central beta(6) hexamer. A hitherto unrecognized domain in the alpha-subunit, formed by residues between the BC and BCCP domains, is crucial for interactions with the beta-subunit. We have named it the BT domain. The structure reveals for the first time the relative positions of the BC and CT active sites in the holoenzyme. They are separated by approximately 55 A, indicating that the entire BCCP domain must translocate during catalysis. The BCCP domain is located in the active site of the beta-subunit in the current structure, providing insight for its involvement in the CT reaction. The structural information establishes a molecular basis for understanding the large collection of disease-causing mutations in PCC and is relevant for the holoenzymes of other biotin-dependent carboxylases, including 3-methylcrotonyl-CoA carboxylase (MCC) and eukaryotic acetyl-CoA carboxylase (ACC).
Resumo:
Primate immunodeficiency viruses, or lentiviruses (HIV-1, HIV-2, and SIV), and hepatitis delta virus (HDV) are RNA viruses characterized by rapid evolution. Infection by primate immunodeficiency viruses usually results in the development of acquired immunodeficiency syndrome (AIDS) in humans and AIDS-like illnesses in Asian macaques. Similarly, hepatitis delta virus infection causes hepatitis and liver cancer in humans. These viruses are heterogeneous within an infected patient and among individuals. Substitution rates in the virus genomes are high and vary in different lineages and among sites. Methods of phylogenetic analysis were applied to study the evolution of primate lentiviruses and the hepatitis delta virus. The following results have been obtained: (1) The substitution rate varies among sites of primate lentivirus genes according to the two parameter gamma distribution, with the shape parameter $\alpha$ being close to 1. (2) Primate immunodeficiency viruses fall into species-specific lineages. Therefore, viral transmissions across primate species are not as frequent as suggested by previous authors. (3) Primate lentiviruses have acquired or lost their pathogenicity several times in the course of evolution. (4) Evidence was provided for multiple infections of a North American patient by distinct HIV-1 strains of the B subtype. (5) Computer simulations indicate that the probability of committing an error in testing HIV transmission depends on the number of virus sequences and their length, the divergence times among sequences, and the model of nucleotide substitution. (6) For future investigations of HIV-1 transmissions, using longer virus sequences and avoiding the use of distant outgroups is recommended. (7) Hepatitis delta virus strains are usually related according to the geographic region of isolation. (8) Evolution of HDV is characterized by the rate of synonymous substitution being lower than the nonsynonymous substitution rate and the rate of evolution of the noncoding region. (9) There is a strong preference for G and C nucleotides at the third codon positions of the HDV coding region. ^
Resumo:
The urokinase-type plasminogen activator receptor (u-PAR) promotes extracellular matrix degradation, invasion and metastasis. A first objective of this dissertation was to identify cis-elements and trans-acting factors activating u-PAR gene expression through a previously footprinted (–148/–124) promoter region. Mobility shifting experiments on nuclear extracts of a high u-PAR-expressing colon cancer cell line (RKO) indicated Sp1, Sp3 and a factor similar to, but distinct from, AP-2α bound to an oligonucleotide spanning –152/–135. Mutations preventing the binding of the AP-2α-related factor reduced u-PAR promoter activity. In RKO, the expression of a dominant negative AP-2 (AP-2αB) diminished u-PAR promoter activity, protein and u-PAR mediated laminin degradation. Conversely, u-PAR promoter activity in low u-PAR-expressing GEO cells was increased by AP-2αA expression. PMA treatment, which induces u-PAR expression, caused an increased amount of the AP-2α-related factor-containing complex in GEO, and mutations preventing AP-2α-like and Sp1/Sp3 binding reduced the u-PAR promoter stimulation by PMA. In resected colon cancers, u-PAR protein amounts were related to the amount of the AP-2α-related factor-containing complex. In conclusion, constitutive and PMA- inducible u-PAR gene expression and -proteolysis are mediated partly through transactivation via a promoter sequence (–152/435) bound with an AP-2α-related factor and Sp1/Sp3. ^ A second interest of this dissertation was to determine if a constitutively active Src regulates the transcription of the u-PAR gene, since c-src expression increases invasion in colon cancer. Increased u-PAR protein and laminin degradation paralleling elevated Src activity was evident in SW480 colon cancer cells stably expressing a constitutively active Src (Y- c-src527F). Nuclear run-on experiments indicated that this was due largely to transcriptional activation. While transient transfection of SW480 cells with Y-c-src527F induced a u-PAR-CAT-reporter, mutations preventing Sp1-binding to promoter region –152/435 abolished this induction. Mobility shift assays revealed increased Sp1 binding to region –152/135 with nuclear extracts of Src-transfected SW480 cells. Finally, the amounts of endogenous u-PAR in resected colon cancers significantly correlated with Src-activity. These data suggest that u-PAR gene expression and proteolysis are regulated by Src, this requiring the promoter region (–152/–135) bound with Sp1, thus, demonstrating for the first time that transcription factor Sp1 is a downstream effector of Src. ^
Resumo:
This dissertation presents evidence to support the hypothesis that cytoplasmic malate dehydrogenase (MDH-1) is the enzyme in humans which catalyzes the reduction of aromatic alpha-keto acids in the presence of NADH, and the enzyme which has been described in the literature as aromatic alpha-keto acid reductase (KAR; E.C. 1.1.1.96) is actually a secondary activity of cytoplasmic malate dehydrogenase.^ Purified MDH and purified KAR have the same molecular weight, subunit structure, heat-inactivation profile and tissue distribution. After starch gel electrophoresis, and using p-hydroxyphenylpyruvic acid (HPPA) as substrate, KAR activity co-migrates with MDH-1 in all species studied except some marine animals. Inhibition with malate, the end-product of malate dehydrogenase, substantially reduces or totally eliminates KAR activity. Purified cytoplasmic MDH from human erythrocytes has an alpha-keto acid reductase activity with identical mobility. All electrophoretic variants of MDH-1 seen in the fresh-water bony fish Xiphophorus, the amphibians Rana and humans exhibited identical variation for KAR, and the two traits co-segregated in the small group of offspring from one Rana heterozygote studied. Both enzymes show almost no electrophoretic variation among humans from many ethnic groups, and among several inbred strains of mice both MDH-s and KAR co-migrate with no variation. MDH-1 and KAR in mouse and Chinese hamster fibroblasts show identical mobility differences between species. Antisera raised against purified chicken cytoplasmic MDH totally inhibited both MDH-1 and KAR in chickens and humans. Mitochondrial MDH from tissue homogenates has no detectable KAR activity but purified MDH-2 does.^ The previous claim that the gene for KAR is on human chromosome 12 is disputed because both MDH-1 and LDH bands appear with slightly different mobility approximately midway between the human and hamster controls in somatic cell hybrid studies, and the meaning of this artifact is discussed. ^
Resumo:
GABAA receptors are the major inhibitory neurotransmitter receptors in the brain. Benzodiazepine exert their action via a high affinity-binding site at the α/γ subunit interface on some of these receptors. Diazepam has sedative, hypnotic, anxiolytic, muscle relaxant, and anticonvulsant effects. It acts by potentiating the current evoked by the agonist GABA. Understanding specific interaction of benzodiazepines in the binding pocket of different GABAA receptor isoforms might help to separate these divergent effects. As a first step, we characterized the interaction between diazepam and the major GABAA receptor isoform α1β2γ2. We mutated several amino acid residues on the γ2-subunit assumed to be located near or in the benzodiazepine binding pocket individually to cysteine and studied the interaction with three ligands that are modified with a cysteine-reactive isothiocyanate group (-NCS). When the reactive NCS group is in apposition to the cysteine residue this leads to a covalent reaction. In this way, three amino acid residues, γ2Tyr58, γ2Asn60, and γ2Val190 were located relative to classical benzodiazepines in their binding pocket on GABAA receptors.