870 resultados para Agent-Based Models
Resumo:
The detection of Parkinson's disease (PD) in its preclinical stages prior to outright neurodegeneration is essential to the development of neuroprotective therapies and could reduce the number of misdiagnosed patients. However, early diagnosis is currently hampered by lack of reliable biomarkers. (1) H magnetic resonance spectroscopy (MRS) offers a noninvasive measure of brain metabolite levels that allows the identification of such potential biomarkers. This study aimed at using MRS on an ultrahigh field 14.1 T magnet to explore the striatal metabolic changes occurring in two different rat models of the disease. Rats lesioned by the injection of 6-hydroxydopamine (6-OHDA) in the medial-forebrain bundle were used to model a complete nigrostriatal lesion while a genetic model based on the nigral injection of an adeno-associated viral (AAV) vector coding for the human α-synuclein was used to model a progressive neurodegeneration and dopaminergic neuron dysfunction, thereby replicating conditions closer to early pathological stages of PD. MRS measurements in the striatum of the 6-OHDA rats revealed significant decreases in glutamate and N-acetyl-aspartate levels and a significant increase in GABA level in the ipsilateral hemisphere compared with the contralateral one, while the αSyn overexpressing rats showed a significant increase in the GABA striatal level only. Therefore, we conclude that MRS measurements of striatal GABA levels could allow for the detection of early nigrostriatal defects prior to outright neurodegeneration and, as such, offers great potential as a sensitive biomarker of presymptomatic PD.
Resumo:
Gas sensing systems based on low-cost chemical sensor arrays are gaining interest for the analysis of multicomponent gas mixtures. These sensors show different problems, e.g., nonlinearities and slow time-response, which can be partially solved by digital signal processing. Our approach is based on building a nonlinear inverse dynamic system. Results for different identification techniques, including artificial neural networks and Wiener series, are compared in terms of measurement accuracy.
Resumo:
Toxicokinetic modeling is a useful tool to describe or predict the behavior of a chemical agent in the human or animal organism. A general model based on four compartments was developed in a previous study in order to quantify the effect of human variability on a wide range of biological exposure indicators. The aim of this study was to adapt this existing general toxicokinetic model to three organic solvents, which were methyl ethyl ketone, 1-methoxy-2-propanol and 1,1,1,-trichloroethane, and to take into account sex differences. We assessed in a previous human volunteer study the impact of sex on different biomarkers of exposure corresponding to the three organic solvents mentioned above. Results from that study suggested that not only physiological differences between men and women but also differences due to sex hormones levels could influence the toxicokinetics of the solvents. In fact the use of hormonal contraceptive had an effect on the urinary levels of several biomarkers, suggesting that exogenous sex hormones could influence CYP2E1 enzyme activity. These experimental data were used to calibrate the toxicokinetic models developed in this study. Our results showed that it was possible to use an existing general toxicokinetic model for other compounds. In fact, most of the simulation results showed good agreement with the experimental data obtained for the studied solvents, with a percentage of model predictions that lies within the 95% confidence interval varying from 44.4 to 90%. Results pointed out that for same exposure conditions, men and women can show important differences in urinary levels of biological indicators of exposure. Moreover, when running the models by simulating industrial working conditions, these differences could even be more pronounced. In conclusion, a general and simple toxicokinetic model, adapted for three well known organic solvents, allowed us to show that metabolic parameters can have an important impact on the urinary levels of the corresponding biomarkers. These observations give evidence of an interindividual variablity, an aspect that should have its place in the approaches for setting limits of occupational exposure.
Resumo:
Urinary incontinence can be treated by endoscopic injection of bulking agents, however, no optimal therapeutic effect has been achieved upon this treatment yet. In the present study, the development of a injectable poly(acrylonitrile) hydrogel paste is described, and its efficacy and histological behavior, once injected into the submucosal space of the minipig bladder, are evaluated. A device was developed to mix poly(acrylonitrile) hydrogel powder with glycerin, used as carrier, prior to injection into the submucosal space of the bladder. Several paste deposits, depending on the size of the bladder, were injected per animal. The implants were harvested at days 7, 14, 21, 28, 84 and 168 and analyzed morphologically and by histology. The persistence of the implants was demonstrated. However, at later time points the implants were split up and surrounded by granulomatous tissue, which was gradually replaced by histiocytes and adipocytes. Transitory focal urothelial metaplasia was observed only at day 7 and moderate foreign body reaction was detected predominantly between the second and fifth week. This study demonstrated the feasibility to develop an injectable paste of poly(acrylonitrile) hydrogel thought to provide the expected bulking effect, necessary for the treatment of urinary incontinence.
Resumo:
Due to the existence of free software and pedagogical guides, the use of data envelopment analysis (DEA) has been further democratized in recent years. Nowadays, it is quite usual for practitioners and decision makers with no or little knowledge in operational research to run themselves their own efficiency analysis. Within DEA, several alternative models allow for an environment adjustment. Five alternative models, each of them easily accessible to and achievable by practitioners and decision makers, are performed using the empirical case of the 90 primary schools of the State of Geneva, Switzerland. As the State of Geneva practices an upstream positive discrimination policy towards schools, this empirical case is particularly appropriate for an environment adjustment. The alternative of the majority of DEA models deliver divergent results. It is a matter of concern for applied researchers and a matter of confusion for practitioners and decision makers. From a political standpoint, these diverging results could lead to potentially opposite decisions. Grâce à l'existence de logiciels en libre accès et de guides pédagogiques, la méthode data envelopment analysis (DEA) s'est démocratisée ces dernières années. Aujourd'hui, il n'est pas rare que les décideurs avec peu ou pas de connaissances en recherche opérationnelle réalisent eux-mêmes leur propre analyse d'efficience. A l'intérieur de la méthode DEA, plusieurs modèles permettent de tenir compte des conditions plus ou moins favorables de l'environnement. Cinq de ces modèles, facilement accessibles et applicables par les décideurs, sont utilisés pour mesurer l'efficience des 90 écoles primaires du canton de Genève, Suisse. Le canton de Genève pratiquant une politique de discrimination positive envers les écoles défavorisées, ce cas pratique est particulièrement adapté pour un ajustement à l'environnement. La majorité des modèles DEA génèrent des résultats divergents. Ce constat est préoccupant pour les chercheurs appliqués et perturbant pour les décideurs. D'un point de vue politique, ces résultats divergents conduisent à des prises de décision différentes selon le modèle sur lequel elles sont fondées.
Resumo:
Aim Conservation strategies are in need of predictions that capture spatial community composition and structure. Currently, the methods used to generate these predictions generally focus on deterministic processes and omit important stochastic processes and other unexplained variation in model outputs. Here we test a novel approach of community models that accounts for this variation and determine how well it reproduces observed properties of alpine butterfly communities. Location The western Swiss Alps. Methods We propose a new approach to process probabilistic predictions derived from stacked species distribution models (S-SDMs) in order to predict and assess the uncertainty in the predictions of community properties. We test the utility of our novel approach against a traditional threshold-based approach. We used mountain butterfly communities spanning a large elevation gradient as a case study and evaluated the ability of our approach to model species richness and phylogenetic diversity of communities. Results S-SDMs reproduced the observed decrease in phylogenetic diversity and species richness with elevation, syndromes of environmental filtering. The prediction accuracy of community properties vary along environmental gradient: variability in predictions of species richness was higher at low elevation, while it was lower for phylogenetic diversity. Our approach allowed mapping the variability in species richness and phylogenetic diversity projections. Main conclusion Using our probabilistic approach to process species distribution models outputs to reconstruct communities furnishes an improved picture of the range of possible assemblage realisations under similar environmental conditions given stochastic processes and help inform manager of the uncertainty in the modelling results
Resumo:
In three-dimensional (3D) coronary magnetic resonance angiography (MRA), the in-flow contrast between the coronary blood and the surrounding myocardium is attenuated as compared to thin-slab two-dimensional (2D) techniques. The application of a gadolinium (Gd)-based intravascular contrast agent may provide an additional source of signal and contrast by reducing T(1blood) and supporting the visualization of more distal or branching segments of the coronary arterial tree. In six healthy adults, the left coronary artery (LCA) system was imaged pre- and postcontrast with a 0.075-mmol/kg bodyweight dose of the intravascular contrast agent B-22956. For imaging, an optimized free-breathing, navigator-gated and -corrected 3D inversion recovery (IR) sequence was used. For comparison, state-of-the-art baseline 3D coronary MRA with T(2) preparation for non-exogenous contrast enhancement was acquired. The combination of IR 3D coronary MRA, sophisticated navigator technology, and B-22956 allowed for an extensive visualization of the LCA system. Postcontrast, a significant increase in both the signal-to-noise ratio (SNR; 46%, P < 0.05) and contrast-to-noise ratio (CNR; 160%, P < 0.01) was observed, while vessel sharpness of the left anterior descending (LAD) artery and the left coronary circumflex (LCX) were improved by 20% (P < 0.05) and 18% (P < 0.05), respectively.
Resumo:
Many transportation agencies maintain grade as an attribute in roadway inventory databases; however, the information is often in an aggregated format. Cross slope is rarely included in large roadway inventories. Accurate methods available to collect grade and cross slope include global positioning systems, traditional surveying, and mobile mapping systems. However, most agencies do not have the resources to utilize these methods to collect grade and cross slope on a large scale. This report discusses the use of LIDAR to extract roadway grade and cross slope for large-scale inventories. Current data collection methods and their advantages and disadvantages are discussed. A pilot study to extract grade and cross slope from a LIDAR data set, including methodology, results, and conclusions, is presented. This report describes the regression methodology used to extract and evaluate the accuracy of grade and cross slope from three dimensional surfaces created from LIDAR data. The use of LIDAR data to extract grade and cross slope on tangent highway segments was evaluated and compared against grade and cross slope collected using an automatic level for 10 test segments along Iowa Highway 1. Grade and cross slope were measured from a surface model created from LIDAR data points collected for the study area. While grade could be estimated to within 1%, study results indicate that cross slope cannot practically be estimated using a LIDAR derived surface model.
Resumo:
We propose a class of models of social network formation based on a mathematical abstraction of the concept of social distance. Social distance attachment is represented by the tendency of peers to establish acquaintances via a decreasing function of the relative distance in a representative social space. We derive analytical results (corroborated by extensive numerical simulations), showing that the model reproduces the main statistical characteristics of real social networks: large clustering coefficient, positive degree correlations, and the emergence of a hierarchy of communities. The model is confronted with the social network formed by people that shares confidential information using the Pretty Good Privacy (PGP) encryption algorithm, the so-called web of trust of PGP.
Resumo:
Tämän tutkimuksen tavoitteena oli tutkia langattomien internet palveluiden arvoverkkoa ja liiketoimintamalleja. Tutkimus oli luonteeltaan kvalitatiivinen ja siinä käytettiin strategiana konstruktiivista case-tutkimusta. Esimerkkipalveluna oli Treasure Hunters matkapuhelinpeli. Tutkimus muodostui teoreettisesta ja empiirisestä osasta. Teoriaosassa liitettiin innovaatio, liiketoimintamallit ja arvoverkko käsitteellisesti toisiinsa, sekä luotiin perusta liiketoimintamallien kehittämiselle. Empiirisessä osassa keskityttiin ensin liiketoimintamallien luomiseen kehitettyjen innovaatioiden pohjalta. Lopuksi pyrittiin määrittämään arvoverkko palvelun toteuttamiseksi. Tutkimusmenetelminä käytettiin innovaatiosessiota, haastatteluja ja lomakekyselyä. Tulosten pohjalta muodostettiin useita liiketoimintakonsepteja sekä kuvaus arvoverkon perusmallista langattomille peleille. Loppupäätelmänä todettiin että langattomat palvelut vaativat toteutuakseen useista toimijoista koostuvan arvoverkon.
Resumo:
This paper presents a theoretical model to analyze the privacy issues around location based mobile business models. We report the results of an exploratory field experiment in Switzerland that assessed the factors driving user payoff in mobile business. We found that (1) the personal data disclosed has a negative effect on user payoff; (2) the amount of personalization available has a direct and positive effect, as well as a moderating effect on user payoff; (3) the amount of control over user's personal data has a direct and positive effect, as well as a moderating effect on user payoff. The results suggest that privacy protection could be the main value proposition in the B2C mobile market. From our theoretical model we derive a set of guidelines to design a privacy-friendly business model pattern for third-party services. We discuss four examples to show the mobile platform can play a key role in the implementation of these new business models.
Resumo:
Due to the existence of free software and pedagogical guides, the use of Data Envelopment Analysis (DEA) has been further democratized in recent years. Nowadays, it is quite usual for practitioners and decision makers with no or little knowledge in operational research to run their own efficiency analysis. Within DEA, several alternative models allow for an environmental adjustment. Four alternative models, each user-friendly and easily accessible to practitioners and decision makers, are performed using empirical data of 90 primary schools in the State of Geneva, Switzerland. Results show that the majority of alternative models deliver divergent results. From a political and a managerial standpoint, these diverging results could lead to potentially ineffective decisions. As no consensus emerges on the best model to use, practitioners and decision makers may be tempted to select the model that is right for them, in other words, the model that best reflects their own preferences. Further studies should investigate how an appropriate multi-criteria decision analysis method could help decision makers to select the right model.