974 resultados para Activated sludge system
Resumo:
In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm, based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining ""absolute"" and ""relative"" safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 [14], using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the ""Automatic Dependent Surveillance-Broadcasting"" (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This research presents the development and implementation in a computational routine of algorithms for fault location in multiterminal transmission lines. These algorithms are part of a fault-location system, which is capable of correctly identifying the fault point based on voltage and current phasor quantities, calculated by using measurements of voltage and current signals from intelligent electronic devices, located on the transmission-line terminals. The algorithms have access to the electrical parameters of the transmission lines and to information about the transformers loading and their connection type. This paper also presents the development of phase component models for the power system elements used by the fault-location algorithms.
Resumo:
An efficient expert system for the power transformer condition assessment is presented in this paper. Through the application of Duval`s triangle and the method of the gas ratios a first assessment of the transformer condition is obtained in the form of a dissolved gas analysis (DGA) diagnosis according IEC 60599. As a second step, a knowledge mining procedure is performed, by conducting surveys whose results are fed into a first Type-2 Fuzzy Logic System (T2-FLS), in order to initially evaluate the condition of the equipment taking only the results of dissolved gas analysis into account. The output of this first T2-FLS is used as the input of a second T2-FLS, which additionally weighs up the condition of the paper-oil system. The output of this last T2-FLS is given in terms of words easily understandable by the maintenance personnel. The proposed assessing methodology has been validated for several cases of transformers in service. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports on design of digital control for wind turbines and its relation to the quality of power fed into the Brazilian grid on connecting to it a 192 MW wind farm equipped with doubly fed induction generators. PWM converters are deployed as vector controlled regulated current voltage sources for their rotors, for independent control of both active and reactive power of those generators. Both speed control and active power control strategies are analyzed, in the search for maximum efficiency of conversion of wind kinetic energy into electric power and enhanced quality of delivered power. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Piezoactuators consist of compliant mechanisms actuated by two or more piezoceramic devices. During the assembling process, such flexible structures are usually bonded to the piezoceramics. The thin bonding layer(s) between the compliant mechanism and the piezoceramic may induce undesirable behavior, including unusual interfacial nonlinearities. This constitutes a drawback of piezoelectric actuators and, in some applications, such as those associated to vibration control and structural health monitoring (e. g., aircraft industry), their use may become either unfeasible or at least limited. A possible solution to this standing problem can be achieved through the functionally graded material concept and consists of developing `integral piezoactuators`, that is those with no bonding layer(s) and whose performance can be improved by tailoring their structural topology and material gradation. Thus, a topology optimization formulation is developed, which allows simultaneous distribution of void and functionally graded piezoelectric materials (including both piezo and non-piezoelectric materials) in the design domain in order to achieve certain specified actuation movements. Two concurrent design problems are considered, that is the optimum design of the piezoceramic property gradation, and the design of the functionally graded structural topology. Two-dimensional piezoactuator designs are investigated because the applications of interest consist of planar devices. Moreover, material gradation is considered in only one direction in order to account for manufacturability issues. To broaden the range of such devices in the field of smart structures, the design of integral Moonie-type functionally graded piezoactuators is provided according to specified performance requirements.
Resumo:
Tungsten carbide has a wide range of applications, mainly cemented carbides made of WC and Co, as wear resistant materials. However, the high cost of WC-Co powders encourages the use of a substrate to manufacture a functionally graded material (FGM) tool made of WC-Co and a tool steel. These materials join the high wear resistance of the cemented carbide and the toughness of the steel. This work deals with the study interaction of the WC-Co and H13 steel to design a functionally graded material by means of spark plasma sintering (SPS). The SPS, a novel sintering technique reaching the consolidation of the powders at relatively low temperatures and short dwell times, is a promising technique in processing materials. In this study, WC, H13 steel, WC-Co, WC-H13 steel and WC-Co-H13 steel bulk samples were investigated using scanning electron microscopy and X-ray diffraction techniques to evaluate the phase transformations involved during SPS consolidation process. The W(2)C and W(3)Fe(3)C precipitation were identified after the SPS consolidation of the WC and WC-H13 steel samples, respectively. The precipitation Of W(4)Co(2)C was also identified in the WC-Co and WC-Co-H13 steel samples. The WC-H 13 steel and WC-Co-H13 steel were also evaluated after heat treatments at 1100 degrees C for 9 h, which enhanced the chemical interaction and the precipitation of W(3)Fe(3)C and W(4)Co(2)C, respectively. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a supervisor system, able to diagnose different types of faults during the operation of a proton exchange membrane fuel cell is introduced. The diagnosis is developed by applying Bayesian networks, which qualify and quantify the cause-effect relationship among the variables of the process. The fault diagnosis is based on the on-line monitoring of variables easy to measure in the machine such as voltage, electric current, and temperature. The equipment is a fuel cell system which can operate even when a fault occurs. The fault effects are based on experiments on the fault tolerant fuel cell, which are reproduced in a fuel cell model. A database of fault records is constructed from the fuel cell model, improving the generation time and avoiding permanent damage to the equipment. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The Cluster Variation Method (CVM), introduced over 50 years ago by Prof. Dr. Ryoichi Kikuchi, is applied to the thermodynamic modeling of the BCC Cr-Fe system in the irregular tetrahedron approximation, using experimental thermochemical data as initial input for accessing the model parameters. The results are checked against independent data on the low-temperature miscibility gap, using increasingly accurate thermodynamic models, first by the inclusion of the magnetic degrees of freedom of iron and then also by the inclusion of the magnetic degrees of freedom of chromium. It is shown that a reasonably accurate description of the phase diagram at the iron-rich side (i.e. the miscibility gap borders and the Curie line) is obtained, but only at expense of the agreement with the above mentioned thermochemical data. Reasons for these inconsistencies are discussed, especially with regard to the need of introducing vibrational degrees of freedom in the CVM model. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This work analyses pellets prepared with iron ore that has been mechanically activated by high energy ball milling. Pellet feed iron ore was submitted to high-energy ball milling for 60 minutes, and the resulting material was analysed through measurements of particle size and specific surface area, as well as X-ray diffraction. Pellets were prepared from this material. The pellets were heated at temperatures ranging from 1000 to 1250 degrees C in a muffle furnace, and submitted to the maximum temperature during 10 - 12 minutes. The samples were then tested regarding crushing strength, densification and porosity, and were examined in a scanning electronic microscope. The results were compared to those obtained with similar samples made from non-milled pellet feed. It has been shown that through high-energy ball milling of iron ore it is possible to achieve pellets presenting high densification and compressive strength at firing temperatures lower than the usual ones.
Resumo:
Gamma ray tomography experiments have been carried out to detect spatial patterns in the porosity in a 0.27 m diameter column packed with steel Rashig rings of different sizes: 12.6, 37.9, and 76 mm. using a first generation CT system (Chen et al., 1998). A fast Fourier transform tomographic reconstruction algorithm has been used to calculate the spatial variation over the column cross section. Cross-sectional gas porosity and solid holdup distribution were determinate. The values of cross-sectional average gas porosity were epsilon=0.849, 0.938 and 0.966 for the 12.6, 37.9, and 76 mm rings, respectively. Radial holdup variation within the packed bed has been determined. The variation of the circumferentially averaged gas holdup in the radial direction indicates that the porosity in the column wall region is a somewhat higher than that in the bulk region, due to the effect of the column wall. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The kinetics and mechanism of the thermal activation of peroxydisulfate, in the temperature range from 60 to 80 degrees C, was investigated in the presence and absence of sodium formate as an additive to turn the oxidizing capacity of the reaction mixture into a reductive one. Trichloroacetic acid, TCA, whose degradation by a reductive mechanism is well reported in the literature, was used as a probe. The chemistry of thermally activated peroxydisulfate is described by a reaction scheme involving free radical generation. The proposed mechanism is evaluated by a computer simulation of the concentration profiles obtained under different experimental conditions. In the presence of formate, SO(4)(center dot-) radicals yield CO(2)(center dot-), which are the main species available for degrading TCA. Under the latter conditions, TCA is more efficiently depleted than in the absence of formate, but otherwise identical conditions of temperature and [S(2)O(8)(2-)]. We therefore conclude that activated peroxydisulfate in the presence of formate as an additive is a convenient method for the mineralization of substrates that are refractory to oxidation. such as perchlorinated hydrocarbons and TCA. This method has the advantage that leaves no toxic residues. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Model predictive control (MPC) is usually implemented as a control strategy where the system outputs are controlled within specified zones, instead of fixed set points. One strategy to implement the zone control is by means of the selection of different weights for the output error in the control cost function. A disadvantage of this approach is that closed-loop stability cannot be guaranteed, as a different linear controller may be activated at each time step. A way to implement a stable zone control is by means of the use of an infinite horizon cost in which the set point is an additional variable of the control problem. In this case, the set point is restricted to remain inside the output zone and an appropriate output slack variable is included in the optimisation problem to assure the recursive feasibility of the control optimisation problem. Following this approach, a robust MPC is developed for the case of multi-model uncertainty of open-loop stable systems. The controller is devoted to maintain the outputs within their corresponding feasible zone, while reaching the desired optimal input target. Simulation of a process of the oil re. ning industry illustrates the performance of the proposed strategy.
Resumo:
Several MPC applications implement a control strategy in which some of the system outputs are controlled within specified ranges or zones, rather than at fixed set points [J.M. Maciejowski, Predictive Control with Constraints, Prentice Hall, New Jersey, 2002]. This means that these outputs will be treated as controlled variables only when the predicted future values lie outside the boundary of their corresponding zones. The zone control is usually implemented by selecting an appropriate weighting matrix for the output error in the control cost function. When an output prediction is inside its zone, the corresponding weight is zeroed, so that the controller ignores this output. When the output prediction lies outside the zone, the error weight is made equal to a specified value and the distance between the output prediction and the boundary of the zone is minimized. The main problem of this approach, as long as stability of the closed loop is concerned, is that each time an output is switched from the status of non-controlled to the status of controlled, or vice versa, a different linear controller is activated. Thus, throughout the continuous operation of the process, the control system keeps switching from one controller to another. Even if a stabilizing control law is developed for each of the control configurations, switching among stable controllers not necessarily produces a stable closed loop system. Here, a stable M PC is developed for the zone control of open-loop stable systems. Focusing on the practical application of the proposed controller, it is assumed that in the control structure of the process system there is an upper optimization layer that defines optimal targets to the system inputs. The performance of the proposed strategy is illustrated by simulation of a subsystem of an industrial FCC system. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We address here aspects of the implementation of a memory evolutive system (MES), based on the model proposed by A. Ehresmann and J. Vanbremeersch (2007), by means of a simulated network of spiking neurons with time dependent plasticity. We point out the advantages and challenges of applying category theory for the representation of cognition, by using the MES architecture. Then we discuss the issues concerning the minimum requirements that an artificial neural network (ANN) should fulfill in order that it would be capable of expressing the categories and mappings between them, underlying the MES. We conclude that a pulsed ANN based on Izhikevich`s formal neuron with STDP (spike time-dependent plasticity) has sufficient dynamical properties to achieve these requirements, provided it can cope with the topological requirements. Finally, we present some perspectives of future research concerning the proposed ANN topology.
Resumo:
This paper presents an analysis of the performance of a baseband multiple-input single-output (MISO) time reversal ultra-wideband system (TR-UWB) incorporating a symbol spaced decision feedback equalizer (DFE). A semi-analytical performance analysis based on a Gaussian approach is considered, which matched well with simulation results, even for the DFE case. The channel model adopted is based on the IEEE 802.15.3a model, considering correlated shadowing across antenna elements. In order to provide a more realistic analysis, channel estimation errors are considered for the design of the TR filter. A guideline for the choice of equalizer length is provided. The results show that the system`s performance improves with an increase in the number of transmit antennas and when a symbol spaced equalizer is used with a relatively small number of taps compared to the number of resolvable paths in the channel impulse response. Moreover, it is possible to conclude that due to the time reversal scheme, the error propagation in the DFE does not play a role in the system`s performance.