986 resultados para 3-Hydroxysteroid Dehydrogenases -- genetics -- metabolism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Degradation of fatty acids having cis-double bonds on even-numbered carbons requires the presence of auxiliary enzymes in addition to the enzymes of the core beta-oxidation cycle. Two alternative pathways have been described to degrade these fatty acids. One pathway involves the participation of the enzymes 2, 4-dienoyl-coenzyme A (CoA) reductase and Delta(3)-Delta(2)-enoyl-CoA isomerase, whereas the second involves the epimerization of R-3-hydroxyacyl-CoA via a 3-hydroxyacyl-CoA epimerase or the action of two stereo-specific enoyl-CoA hydratases. Although degradation of these fatty acids in bacteria and mammalian peroxisomes was shown to involve mainly the reductase-isomerase pathway, previous analysis of the relative activity of the enoyl-CoA hydratase II (also called R-3-hydroxyacyl-CoA hydro-lyase) and 2,4-dienoyl-CoA reductase in plants indicated that degradation occurred mainly through the epimerase pathway. We have examined the implication of both pathways in transgenic Arabidopsis expressing the polyhydroxyalkanoate synthase from Pseudomonas aeruginosa in peroxisomes and producing polyhydroxyalkanoate from the 3-hydroxyacyl-CoA intermediates of the beta-oxidation cycle. Analysis of the polyhydroxyalkanoate synthesized in plants grown in media containing cis-10-heptadecenoic or cis-10-pentadecenoic acids revealed a significant contribution of both the reductase-isomerase and epimerase pathways to the degradation of these fatty acids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of infusion of a triglyceride emulsion (which induces peripheral insulin resistance) and amino acids (which stimulate gluconeogenesis) on glucose metabolism were investigated in healthy lean humans during exogenous infusion of glucose. One group of subjects (n = 5) was infused for 7.5 h with 11.1 mumol/kg/min glucose; during the last 4 h, amino acids were also infused at a rate of 3.33 mg/kg/min. A second group of subjects (n = 5) was infused with glucose+lipids (Lipovenös, 10% 10 ml/min) for 7.5 h and amino acids were added during the last 4 h. Infusion of lipids suppressed the increase in glucose oxidation observed during infusion of glucose alone (delta glucose oxidation: -2.1 +/- 1.1 vs. + 4.5 +/- 1.4 mumol/kg/min; P < 0.05) and during infusion of glucose+amino acids (delta glucose oxidation: + 1.6 +/- 1.4 vs. + 10.6 +/- 1.2 mumol/kg/min; P < 0.05). Gluconeogenesis (determined from 13C glucose synthesis during infusion of 13C bicarbonate) increased from 1.1 +/- 0.2 mumol/kg/min during infusion of glucose and 1.6 +/- 0.3 during infusion of glucose+lipids to 3.2 +/- 0.4 and 3.1 +/- 0.4, respectively, when amino acid infusion was superimposed (P < 0.05 in both instances). Plasma glucose concentrations were identical during infusion of glucose alone or glucose+amino acids, with or without lipids. Insulin concentrations were significantly increased by lipids both during infusion of glucose alone and of glucose+amino acids.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of a 7 d high-fructose diet (HFrD) or control diet on lipid metabolism were studied in a group of six healthy lean males. Plasma NEFA and beta-hydroxybutyrate concentrations, net lipid oxidation (indirect calorimetry) and exogenous lipid oxidation (13CO2 production) were monitored in basal conditions, after lipid loading (olive oil labelled with [13C]triolein) and during a standardised mental stress. Lactate clearance and the metabolic effects of an exogenous lactate infusion were also monitored. The HFrD lowered plasma concentrations of NEFA and beta-hydroxybutyrate as well as lipid oxidation in both basal and after lipid-loading conditions. In addition, the HFrD blunted the increase in plasma NEFA and exogenous lipid oxidation during mental stress. The HFrD also increased basal lactate concentrations by 31.8 %, and lactate production by 53.8 %, while lactate clearance remained unchanged. Lactate infusion lowered plasma NEFA with the control diet, and net lipid oxidation with both the HFrD and control diet. These results indicate that a 7 d HFrD markedly inhibits lipolysis and lipid oxidation. The HFrD also increases lactate production, and the ensuing increased lactate utilisation may contribute to suppress lipid oxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nuclear hormone receptors called PPARs (peroxisome proliferator-activated receptors alpha, beta, and gamma) regulate the peroxisomal beta-oxidation of fatty acids by induction of the acyl-CoA oxidase gene that encodes the rate-limiting enzyme of the pathway. Gel retardation and cotransfection assays revealed that PPAR alpha heterodimerizes with retinoid X receptor beta (RXR beta; RXR is the receptor for 9-cis-retinoic acid) and that the two receptors cooperate for the activation of the acyl-CoA oxidase gene promoter. The strongest stimulation of this promoter was obtained when both receptors were exposed simultaneously to their cognate activators. Furthermore, we show that natural fatty acids, and especially polyunsaturated fatty acids, activate PPARs as potently as does the hypolipidemic drug Wy 14,643, the most effective activator known so far. Moreover, we discovered that the synthetic arachidonic acid analogue 5,8,11,14-eicosatetraynoic acid is 100 times more effective than Wy 14,643 in the activation of PPAR alpha. In conclusion, our data demonstrate a convergence of the PPAR and RXR signaling pathways in the regulation of the peroxisomal beta-oxidation of fatty acids by fatty acids and retinoids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of retinoic acids (RA) on liver fatty acid-binding protein (L-FABP) expression was investigated in the well differentiated FAO rat hepatoma cell line. 9-cis-Retinoic acid (9-cis-RA) specifically enhanced L-FABP mRNA levels in a time- and dose-dependent manner. The higher induction was found 6 h after addition of 10(-6) M 9-cis-RA in the medium. RA also enhanced further both L-FABP mRNA levels and cytosolic L-FABP protein content induced by oleic acid. The retinoid X receptor (RXR) and the peroxisome proliferator-activated receptor (PPAR), which are known to be activated, respectively, by 9-cis-RA and long chain fatty acid (LCFA), co-operated to bind specifically the peroxisome proliferator-responsive element (PPRE) found upstream of the L-FABP gene. Our result suggest that the PPAR-RXR complex is the molecular target by which 9-cis-RA and LCFA regulate the L-FABP gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Prior clozapine studies indicated no effects, mild inhibition or induction of valproic acid (VPA) on clozapine metabolism. The hypotheses that (i) VPA is a net inducer of clozapine metabolism, and (ii) smoking modifies this inductive effect were tested in a therapeutic drug monitoring study. Methods: After excluding strong inhibitors and inducers, 353 steady-state total clozapine (clozapine plus norclozapine) concentrations provided by 151 patients were analyzed using a random intercept linear model. Results: VPA appeared to be an inducer of clozapine metabolism since total plasma clozapine concentrations in subjects taking VPA were significantly lower (27% lower; 95% confidence interval, 14-39%) after controlling for confounding variables including smoking (35% lower, 28-56%). Discussion: Prospective studies are needed to definitively establish that VPA may (i) be an inducer of clozapine metabolism when induction prevails over competitive inhibition, and (ii) be an inducer even in smokers who are under the influence of smoking inductive effects on clozapine metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SPP1-encoded replicative DNA helicase gene 40 product (G40P) is an essential product for phage replication. Hexameric G40P, in the presence of AMP-PNP, preferentially binds unstructured single-stranded (ss)DNA in a sequence-independent manner. The efficiency of ssDNA binding, nucleotide hydrolysis and the unwinding activity of G40P are affected in a different manner by different nucleotide cofactors. Nuclease protection studies suggest that G40P protects the 5' tail of a forked molecule, and the duplex region at the junction against exonuclease attack. G40P does not protect the 3' tail of a forked molecule from exonuclease attack. By using electron microscopy we confirm that the ssDNA transverses the centre of the hexameric ring. Our results show that hexameric G40P DNA helicase encircles the 5' tail, interacts with the duplex DNA at the ss-double-stranded DNA junction and excludes the 3' tail of the forked DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variability in response to atypical antipsychotic drugs is due to genetic and environmental factors. Cytochrome P450 (CYP) isoforms are implicated in the metabolism of drugs, while the P-glycoprotein transporter (P-gp), encoded by the ABCB1 gene, may influence both the blood and brain drug concentrations. This study aimed to identify the possible associations of CYP and ABCB1 genetic polymorphisms with quetiapine and norquetiapine plasma and cerebrospinal fluid (CSF) concentrations and with response to treatment. Twenty-two patients with schizophrenia receiving 600 mg of quetiapine daily were genotyped for four CYP isoforms and ABCB1 polymorphisms. Quetiapine and norquetiapine peak plasma and CSF concentrations were measured after 4 weeks of treatment. Stepwise multiple regression analysis revealed that ABCB1 3435C > T (rs1045642), 2677G > T (rs2032582) and 1236C > T (rs1128503) polymorphisms predicted plasma quetiapine concentrations, explaining 41% of the variability (p = 0.001). Furthermore, the ABCB1 polymorphisms predicted 48% (p = 0.024) of the variability of the Δ PANSS total score, with the non-carriers of the 3435TT showing higher changes in the score. These results suggest that ABCB1 genetic polymorphisms may be a predictive marker of quetiapine treatment in schizophrenia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uncontrolled endoplasmic reticulum (ER) stress responses are proposed to contribute to the pathology of chronic inflammatory diseases such as type 2 diabetes or atherosclerosis. However, the connection between ER stress and inflammation remains largely unexplored. Here, we show that ER stress causes activation of the NLRP3 inflammasome, with subsequent release of the pro-inflammatory cytokine interleukin-1β. This ER-triggered proinflammatory signal shares the same requirement for reactive oxygen species production and potassium efflux compared with other known NLRP3 inflammasome activators, but is independent of the classical unfolded protein response (UPR). We thus propose that the NLRP3 inflammasome senses and responds to ER stress downstream of a previously uncharacterized ER stress response signaling pathway distinct from the UPR, thus providing mechanistic insight to the link between ER stress and chronic inflammatory diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the plant-beneficial, root-colonizing strain Pseudomonas fluorescens CHA0, the Gac/Rsm signal transduction pathway positively regulates the synthesis of biocontrol factors (mostly antifungal secondary metabolites) and contributes to oxidative stress response via the stress sigma factor RpoS. The backbone of this pathway consists of the GacS/GacA two-component system, which activates the expression of three small regulatory RNAs (RsmX, RsmY, RsmZ) and thereby counters translational repression exerted by the RsmA and RsmE proteins on target mRNAs encoding biocontrol factors. We found that the expression of typical biocontrol factors, that is, antibiotic compounds and hydrogen cyanide (involving the phlA and hcnA genes), was significantly lower at 35 degrees C than at 30 degrees C. The expression of the rpoS gene was affected in parallel. This temperature control depended on RetS, a sensor kinase acting as an antagonist of the GacS/GacA system. An additional sensor kinase, LadS, which activated the GacS/GacA system, apparently did not contribute to thermosensitivity. Mutations in gacS or gacA were epistatic to (that is, they overruled) mutations in retS or ladS for expression of the small RNAs RsmXYZ. These data are consistent with a model according to which RetS-GacS and LadS-GacS interactions shape the output of the Gac/Rsm pathway and the environmental temperature influences the RetS-GacS interaction in P. fluorescens CHA0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The existence of at least three isoforms of Na(+)-K(+)-ATPase in adult brain tissues [alpha 1, kidney type; alpha 2 [or alpha(+)]; alpha 3] suggests that these genes might be regulated in a cell-specific and time-dependent manner during development. We have studied this question in serum-free aggregating cell cultures of mechanically dissociated rat fetal telencephalon. At the protein level, the relative rate of synthesis of the pool of alpha 1-, alpha 2-, and alpha 3-subunits increased approximately twofold over 15 days of culture, leading to a marked increase in the immunochemical pool of alpha-subunits as measured by a panspecific polyclonal antibody. Concomitantly, Na(+)-K(+)-ATPase enzyme-specific activity increased three- (lower forebrain) to sixfold (upper forebrain). The transcripts of all three alpha-isoforms and beta-subunit were detected in vitro in similar proportion to the level observed in vivo. alpha 3-mRNA (3.7 kb) was more abundant than alpha 1 (3.7 kb) or alpha 2 (5.3 and 3.4 kb). Cytosine arabinoside (0.4 microM) and cholera toxin (0.1 microM) were used to selectively eliminate glial cells or neurons, respectively. It was found that alpha 2-mRNA is predominantly transcribed in glial cell cultures, whereas alpha 3- and beta 1-mRNA (2.7, 2.3, and 1.8 kb) are predominant in neuronal cultures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many physiological processes in organisms from bacteria to man are rhythmic, and some of these are controlled by self-sustained oscillators that persist in the absence of external time cues. Circadian clocks are perhaps the best characterized biological oscillators and they exist in virtually all light-sensitive organisms. In mammals, they influence nearly all aspects of physiology and behavior, including sleep-wake cycles, cardiovascular activity, endocrinology, body temperature, renal activity, physiology of the gastro-intestinal tract, and hepatic metabolism. The master pacemaker is located in the suprachiasmatic nuclei, two small groups of neurons in the ventral part of the hypothalamus. However, most peripheral body cells contain self-sustained circadian oscillators with a molecular makeup similar to that of SCN (suprachiasmatic nucleus) neurons. This organization implies that the SCN must synchronize countless subsidiary oscillators in peripheral tissues, in order to coordinate cyclic physiology. In this review, we will discuss some recent studies on the structure and putative functions of the mammalian circadian timing system, but we will also point out some apparent inconsistencies in the currently publicized model for rhythm generation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human tumors often contain slowly proliferating cancer cells that resist treatment, but we do not know precisely how these cells arise. We show that rapidly proliferating cancer cells can divide asymmetrically to produce slowly proliferating "G0-like" progeny that are enriched following chemotherapy in breast cancer patients. Asymmetric cancer cell division results from asymmetric suppression of AKT/PKB kinase signaling in one daughter cell during telophase of mitosis. Moreover, inhibition of AKT signaling with small-molecule drugs can induce asymmetric cancer cell division and the production of slow proliferators. Cancer cells therefore appear to continuously flux between symmetric and asymmetric division depending on the precise state of their AKT signaling network. This model may have significant implications for understanding how tumors grow, evade treatment, and recur.