1000 resultados para 1,3-Butadiene per unit sediment mass
Resumo:
During Ocean Drilling Program Leg 210, a greatly expanded sedimentary sequence of continuous Cretaceous black shales was recovered at Site 1276. This section corresponds to the Hatteras Formation, which has been documented widely in the North Atlantic Ocean. The cored sequence extends from the lowermost Albian, or possibly uppermost Aptian, to the Cenomanian/Turonian boundary and is characterized by numerous gravity-flow deposits and sporadic, finely laminated black shales. The sequence also includes several sedimentary intervals with high total organic carbon (TOC) contents, in several instances of probable marine origin that may record oceanic anoxic events (OAE). These layers might correspond to the Cenomanian-Turonian OAE 2; the mid-Cenomanian event; and OAE 1b, 1c, and 1d in the Albian. In addition, another interval with geochemical characteristics similar to OAE-type layers was recognized in the Albian, although it does not correspond to any of the known OAEs. This study investigates the origin of the organic matter contained within these black shale intervals using TOC and CaCO3 contents, Corg/Ntot ratios, organic carbon and nitrogen isotopes, trace metal composition, and rock-eval analyses. Most of these black shale intervals, especially OAE 2 and 1b, are characterized by low 15N values (<0) commonly observed in mid-Cretaceous black shales, which seem to reflect the presence of an altered nitrogen cycle with rates of nitrogen fixation significantly higher than in the modern ocean.
Resumo:
Free and ester-bound lipid biomarkers were analysed in oxidised and unoxidised parts of four distinct turbidites from the Madeira Abyssal Plain (MAP), which contained 1 to 2% organic carbon homogeneously distributed throughout the turbidites at the time they were deposited. These turbidites are well suited to study the effects of oxic degradation on lipid biomarkers without the complicating influence of varying organic matter sources, sedimentation rates, or bioturbation. One sample from the oxidised turbidite was compared with two samples from the unoxidised part of each turbidite. Postdepositional oxic degradation decreased concentrations of biomarkers by several orders of magnitude. The ester-bound lipids were degraded to a far lesser extent than their free counterparts were. The extent of degradation of different compounds differed substantially. Within a specific class of biomarkers, degradation also took place to a different extent, altering their distributions. This study shows that oxic degradation of the organic matter may have a profound effect on the biomarker fingerprint and may result in a severe bias in, for example, the interpretation of organic matter sources and the estimation of the palaeoproductivity of specific groups of phytoplankton.
Resumo:
Quantitative information on metazoan meiofaunal abundance and biomass was obtained from three continental shelf (at 40, 100 and 200 m depth) and four deep-sea stations (at 540, 700, 940 and 1540 m depth) in the Cretan Sea (South Aegean Sea, NE Mediterranean). Samples were collected on a seasonal basis (from August 1994 to September 1995) with the use of a multiple corer. Meiofaunal abundance and biomass on the continental shelf of the Cretan Sea were high, in contrast to the extremely low values reported for the bathyal sediments that showed values comparable to those reported for abyssal and hadal environments. In order to explain the spatial and seasonal changes in metazoan meiofauna these data were compared with: (1) the concentrations of 'food indicators' (such as proteins, lipids, soluble carbohydrates and CPE) (2) the bacterial biomass (3) the flux of labile organic compounds to the sea floor at a fixed station (D7, 1540 m depth). Highly significant relationships between meiofaunal parameters and CPE, protein and lipid concentrations and bacterial biomass were found. Most of the indicators of food quality and quantity (such as CPE, proteins and carbohydrates) showed a clear seasonality with highest values in February and lowest in September. Such changes were more evident on the continental shelf rather than at deeper depths. On the continental shelf, significant seasonal changes in meiofaunal density were related to changes in the input of labile organic carbon whereas meiofaunal assemblages on the deep-sea stations showed time-lagged changes in response to the food input recorded in February 95. At all deep-sea stations meiofaunal density increased with a time lag of 2 months. Indications for a time-lagged meiofaunal response to the food inputs were also provided by the increase in nauplii densities during May 95 and the increase in individual biomass of nematodes, copepods and polychaetes between February and May 1995. The lack of strong seasonal changes in deep sea meiofaunal density suggests that the supply of organic matter below 500 m is not strong enough to support a significant meiofaunal development. Below 700 m depth >92% of the total biomass in the sediment was represented by bacteria. The ratio of bacterial to meiofaunal biomass increased with increasing water depth indicating that bacteria are probably more effective than meiofauna in exploiting refractory organic compounds. These data lead us to hypothesise that the deep-sea sediments of the Cretan Sea are largely dependent upon a benthic microbial loop.
Resumo:
Authigenic minerals can form in the water column and sediments of lakes, either abiotically or mediated by biological activity. Such minerals have been used as paleosalinity and paleoproductivity indicators and reflect trophic state and early diagenetic conditions. They are also considered potential indicators of past and perhaps ongoing microbial activity within sediments. Authigenic concretions, including vivianite, were described in late glacial sediments of Laguna Potrok Aike, a maar lake in southernmost Argentina. Occurrence of iron phosphate implies specific phosphorus sorption behavior and a reducing environment, with methane present. Because organic matter content in these sediments was generally low during glacial times, there must have been alternative sources of phosphorus and biogenic methane. Identifying these sources can help define past trophic state of the lake and diagenetic processes in the sediments. We used scanning electron microscopy, phosphorus speciation in bulk sediment, pore water analyses, in situ ATP measurements, microbial cell counts, and measurements of methane content and its carbon isotope composition (d13C CH4) to identify components of and processes in the sediment. The multiple approaches indicated that volcanic materials in the catchment are important suppliers of iron, sulfur and phosphorus. These elements influence primary productivity and play a role in microbial metabolism during early diagenesis. Authigenic processes led to the formation of pyrite framboids and revealed sulfate reduction. Anaerobic oxidation of methane and shifts in pore water ion concentration indicated microbial influence with depth. This study documents the presence of active microbes within the sediments and their relationship to changing environmental conditions. It also illustrates the substantial role played by microbes in the formation of Laguna Potrok Aike concretions. Thus, authigenic minerals can be used as biosignatures in these late Pleistocene maar sediments.
Resumo:
Based on 66 surface sediment samples collected in the SW Atlantic Ocean between 27 and 50°S, this study presents an overview of the spatial distribution of biogenic opal and diatom concentrations, and diatom assemblages. Biogenic opal has highest values in the deepest, pelagic stations and decreases toward the slope. Diatoms closely follow the spatial trend of opal. Diatom assemblages reflect the present-day dominant hydrographical features. Antarctic diatoms are the main contributors to the preserved diatom community in core top sediments, with coastal planktonic and tropical/subtropical diatoms as secondary components. Dominance of Antarctic diatoms between 35 and 50°S in the pelagic realm mirrors the northward displacement of Antarctic-source water masses, characterized by high nutrient content and low salinity. Northward of ca. 35°S, the highest contribution of tropical/subtropical, pelagic diatoms, typical for nutrient-poor and high salinity waters, matches the main southward path of the Brazil Current. Mixing of Antarctic and tropical waters down up to 45°S is clearly illustrated by the diatom assemblage. Concentrations of biogenic opal and diatoms rather reflect the path of predominant water masses, but are less correlated with surface water productivity in the SW Atlantic.
Resumo:
Composition and accumulation rates of organic carbon in Holocene sediments provided data to calculate an organic carbon budget for the Laptev Sea continental margin. Mean Holocene accumulation rates in the inner Laptev Sea vary between 0.14 and 2.7 g C cm**2/ky; maximum values occur close to the Lena River delta. Seawards, the mean accumulation rates decrease from 0.43 to 0.02 g C cm**2/ky. The organic matter is predominantly of terrigenous origin. About 0.9*10**6 t/year of organic carbon are buried in the Laptev Sea, and 0.25*10**6 t/year on the continental slope. Between about 8.5 and 9 ka, major changes in supply of terrigenous and marine organic carbon occur, related to changes in coastal erosion, Siberian river discharge, and/or Atlantic water inflow along the Eurasian continental margin.
Resumo:
We have preliminarily generated the downcore records of total organic carbon (TOC) content, total alkenone concentration, alkenone unsaturation index, and the estimated sea-surface temperature (SST) in the northern three sites (Sites 1175, 1176, and 1178) of the Muroto Transect, Nankai Trough. The TOC content will be used for the evaluation of the burial of organic matter, which plays a role in the generation of natural gas and the formation of gas hydrate in this region. The downcore records of alkenone SST will benefit studies for the paleoceanography of the northwestern Pacific. Because those sites are located in the main path of the Kuroshio Current, the records provide the temperature change of the Kuroshio water, which is an end-member water mass in the northwestern Pacific.