994 resultados para wet deposition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tensile-strained GaAsP/GaInP single quantum well (QW) laser diode (I-D) structures have been grown by low-pressure metal organic chemical vapor deposition (LP-MOCVD) and related photoluminescence (PL) properties have been investigated in detail. The samples have the same well thickness of 16 nm but different P compositions in a GaAsP QW. Two peaks in room temperature (RT) PL spectra are observed for samples with a composition larger than 0.10. Temperature and excitation-power-dependent PL spectra have been measured for a sample with it P composition of 0.15. It is found that the two peaks have a 35 meV energy separation independent of temperature and only the low-energy peak exists below 85 K. Additionally, both peak intensities exhibit a monotonous increase as excitation power increases. Analyses indicate that the two peaks arise from the intrinsic-exciton recombination mechanisms of electron-heavy hole (e-hh) and electron-light hole (e-hh). A theoretical calculation based oil model-solid theory, taking, into account the spin-orbit splitting energy, shows good agreement with our experimental results. The temperature dependence of PL intensity ratio is well explained using the spontaneous emission theory for e-hh and e-hh transitions. front which the ratio can be characterized mainly by the energy separation between the fill and Ill states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low temperature (LT) AlN interlayers were used to effectively reduce the tension stress and micro-cracks on the surface of the GaN epilayer grown on Si (111) substrate. Optical Microscopy (OM), Atomic Force Microscopy (AFM), Surface Electron Microscopy (SEM) and X-Ray Diffraction (XRD) were employed to characterize these samples grown by metal-organic chemical vapor deposition (MOCVD). In addition, wet etching method was used to evaluate the defect of the GaN epilayer. The results demonstrate that the morphology and crystalline properties of the GaN epilayer strongly depend on the thickness, interlayer number and growth temperature of the LT AlN interlayer. With the optimized LT AlN interlayer structures, high quality GaN epilayers with a low crack density can be obtained. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Employing the metal-organic chemical vapour deposition (MOCVD) technique, we prepare ZnO samples with different morphologies from the film to nanorods through conveniently changing the bubbled diethylzinc flux (BDF) and the carrier gas flux of oxygen (OCGF). The scanning electron microscope images indicate that small BDF and OCGF induce two-dimensional growth while the large ones avail quasi-one-dimensional growth. X-ray diffraction (XRD) and Raman scattering analyses show that all of the morphology-dependent ZnO samples are of high crystal quality with a c-axis orientation. From the precise shifts of the 2 theta. locations of ZnO (002) face in the XRD patterns and the E-2(high) locations in the Raman spectra, we deduce that the compressive stress forms in the ZnO samples and is strengthened with the increasing BDF and OCGF. Photoluminescence spectroscopy results show all the samples have a sharp ultraviolet luminescent band without any defects-related emission. Upon the experiments a possible growth mechanism is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sapphire substrates were nanopatterned by dry (inductively coupled plasma, ICP) etching to improve the performance of GaN-based light-emitting diodes (LEDs). GaN-based LEDs on nanopatterned sapphire substrates (NPSS) were fabricated by metal organic chemical vapor deposition (MOCVD). The characteristics of LEDs fabricated on NPSS prepared by dry etching were studied. The light output power and wall-plug efficiency of the LEDs fabricated on NPSS were greater than those of the conventional LEDs fabricated on common planar sapphire substrates when the injection currents were the same. The LEDs on NPSS and common planar sapphire substrates have similar I-V characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-quality Ge epilayer on Si(1 0 0) substrate with an inserted low-temperature Ge seed layer and a thin Si0.77Ge0.23 layer was grown by ultrahigh vacuum chemical vapor deposition. The epitaxial Ge layer with surface root-mean-square roughness of 0.7 nm and threading dislocation density of 5 x 10(5) cm(-2) was obtained. The influence of low temperature Ge seed layer on the quality of Ge epilayer was investigated. We demonstrated that the relatively higher temperature (350 degrees C) for the growth of Ge seed layer significantly improved the crystal quality and the Hall hole mobility of the Ge epilayer. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano-patterned sapphire substrates (NPSSs) were fabricated by a chemical wet etching technology using nano-sized SiO2 as masks. The NPSS was applied to improve the performance of GaN-based light emitting diodes (LEDs). GaN-based LEDs on NPSSs were grown by metal organic chemical vapour deposition. The characteristics of LEDs grown on NPSSs and conventional planar sapphire substrates were studied. The light output powers of the LEDs fabricated on NPSSs were considerably enhanced compared with that of the conventional LEDs grown on planar sapphire substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the growth temperature on the surface and interface quality for the GaN/AlN multiquantum well (MQW) layer grown by metal-organic vapour chemical deposition is investigated. The obtained GaN/AlN MQW structure is almost coherent to the underlying AlGaN layer at improved growth conditions. With a relatively low growth temperature, the GaN/AlN MQW growth rate increases, the surface roughness reduces considerably and no macro steps are observed, resulting in a better periodicity of MQW.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO films are prepared on glass substrates by pulsed laser deposition (PLD) at different oxygen pressures, and the effects of oxygen pressure on the structure and optoelectrical properties of as-grown ZnO films are investigated. The results show that the crystallite size and surface roughness of the films increase, but the carrier concentration and optical energy gap E-g decrease with increasing oxygen pressure. Only UV emission is found in the photoluminescence (PL) spectra of all the samples, and its intensity increases with oxygen pressure. Furthermore, there are marked differences in structure and properties between the films grown at low oxygen pressures (0.003 and 0.2 Pa) and the films grown at high oxygen pressures (24 and 150 Pa), which is confirmed by the fact that the crystallite size and UV emission intensity markedly increase, but the carrier concentration markedly decreases as oxygen pressure increases from 0.2 to 24 Pa. These results show that the crystal quality, including the microstructural quality and stoichiometry proportion, of the prepared ZnO films improves as oxygen pressure increases, particularly from 0.2 to 24 Pa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 3-dB paired interference (PI) optical coupler in silicon-on-insulator (SOI) based on rib waveguides with trapezoidal cross section was designed with simulation by a modified finite-difference beam propagation method (FD-BPM) and fabricated by potassium hydroxide (KOH) anisotropic chemical wet etching. Theoretically, tolerances of width, length, and port distance are more than 1, 100, and 1 mu m, respectively. Smooth interface was obtained with the propagation loss of 1.1 dB/cm at the wavelength of 1.55 mu m. The coupler has a good uniformity of 0.2 dB and low excess loss of less than 2 dB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenated microcrystalline silicon (mu c-Si:H) thin films were prepared by high-pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition rate and crystallinity varying with the deposition pressure, rf power, hydrogen dilution ratio and electrodes distance were systematically studied. By optimizing the deposition parameters the device quality mu c-Si:H films have been achieved with a high deposition rate of 7.8 angstrom/s at a high pressure. The V-oc of 560 mV and the FF of 0.70 have been achieved for a single-junction mu c-Si:H p-i-n solar cell at a deposition rate of 7.8 angstrom/s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the structural defects in the SiOx film prepared by electron cyclotron resonance plasma chemical vapour deposition and annealing recovery evolution. The photoluminescence property is observed in the as-deposited and annealed samples. [-SiO3](2-) defects are the luminescence centres of the ultraviolet photoluminescence (PL) from the Fourier transform infrared spectroscopy and PL measurements. [-SiO3](2-) is observed by positron annihilation spectroscopy, and this defect can make the S parameters increase. After 1000 degrees C annealing, [-SiO3](2-) defects still exist in the films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO nanoflowers are synthesized on AIN films by solution method. The synthesized nanoflowers are composed of nanorods, which are pyramidal and grow from a central point, thus forming structures that are flower-shaped as a whole. The nanoflowers have two typical morphologies: plate-like and bush-like. The XRD spectrum corresponds to the side planes of the ZnO nanorods made up of the nanoflowers. The micro-Raman spectrum of the ZnO nanoflowers exhibits the E-2 (high) mode and the second order multiple-phonon mode. The photoluminescence spectrum of the ZnO nanoflowers exhibits ultraviolet emission centred at 375 nm and a broad green emission centred at 526 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO films were grown at low pressure in a vertical metal-organic vapor deposition (MOCVD) reactor with a rotating disk. The structural and morphological properties of the ZnO films grown at different disk rotation rate (DRR) were investigated. The growth rate increases with the increase of DRR. The ZnO film grown at the DRR of 450 revolutions per minute (rpm) has the lowest X-ray rocking curve full width at half maximum and shows the best crystalline quality and morphology. In addition, the crystalline quality and morphology are improved as the DRR increased but both are degraded when the DRR is higher than 450 rpm. These results can help improve in understanding the rotation effects on the ZnO films grown by MOCVD. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sapphire substrates were patterned by a chemical wet etching technique in the micro- and nanoscale to enhance the light output power of InGaN/GaN light-emitting diodes (LEDs). InGaN/GaN LEDs on a pyramidal patterned sapphire substrate in the microscale (MPSS) and pyramidal patterned sapphire substrate in the nanoscale (NPSS) were grown by metalorganic chemical vapor deposition. The characteristics of the LEDs fabricated on the MPSS and NPSS prepared by wet etching were studied and the light output powers of the LEDs fabricated on the MPSS and NPSS increased compared with that of the conventional LEDs fabricated on planar sapphire substrates. In comparison with the planar sapphire substrate, an enhancement in output power of about 29% and 48% is achieved with the MPSS and NPSS at an injection current of 20 mA, respectively. This significant enhancement is attributable to the improvement of the epitaxial quality of GaN-based epilayers and the improvement of the light extraction efficiency by patterned sapphire substrates. Additionally, the NPSS is more effective to enhance the light output power than the MPSS. (c) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO thin films were prepared by pulsed laser deposition (PLD) on glass substrates with growth temperature from room temperature (RT) to 500 degrees C. The effects of substrate temperature on the structural and optical properties of ZnO films have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission spectra, and RT photoluminescence (PL) measurements. The results showed that crystalline and (0 0 2)-oriented ZnO films were obtained at all substrate temperatures. As the substrate temperature increased from RT to 500 degrees C, the ratio of grain size in height direction to that in the lateral direction gradually decreased. The same grain size in two directions was obtained at 200 degrees C, and the size was smallest in all samples, which may result in maximum E, and E-0 of the films. UV emission was observed only in the films grown at 200 degrees C, which is probably because the stoichiometry of ZnO films was improved at a suitable substrate temperature. It was suggested that the UV emission might be related to the stoichiometry in the ZnO film rather than the grain size of the thin film. (c) 2007 Elsevier Ltd. All rights reserved.