945 resultados para upper level (UL) coupling field


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wave breaking in the open ocean and coastal zones remains an intriguing yet incompletely understood process, with a strong observed association with wave groups. Recent numerical study of the evolution of fully nonlinear, two-dimensional deep water wave groups identified a robust threshold of a diagnostic growth-rate parameter that separated nonlinear wave groups that evolved to breaking from those that evolved with recurrence. This paper investigates whether these deep water wave-breaking results apply more generally, particularly in finite-water-depth conditions. For unforced nonlinear wave groups in intermediate water depths over a flat bottom, it was found that the upper bound of the diagnostic growth-rate threshold parameter established for deep water wave groups is also applicable in intermediate water depths, given by k(0) h greater than or equal to 2, where k(0) is the mean carrier wavenumber and h is the mean depth. For breaking onset over an idealized circular arc sandbar located on an otherwise flat, intermediate-depth (k(0) h greater than or equal to 2) environment, the deep water breaking diagnostic growth rate was found to be applicable provided that the height of the sandbar is less than one-quarter of the ambient mean water depth. Thus, for this range of intermediate-depth conditions, these two classes of bottom topography modify only marginally the diagnostic growth rate found for deep water waves. However, when intermediate-depth wave groups ( k(0) h greater than or equal to 2) shoal over a sandbar whose height exceeds one-half of the ambient water depth, the waves can steepen significantly without breaking. In such cases, the breaking threshold level and the maximum of the diagnostic growth rate increase systematically with the height of the sandbar. Also, the dimensions and position of the sandbar influenced the evolution and breaking threshold of wave groups. For sufficiently high sandbars, the effects of bottom topography can induce additional nonlinearity into the wave field geometry and associated dynamics that modifies the otherwise robust deep water breaking-threshold results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The perturbation method is developed to investigate the effective nonlinear dielectric response of Kerr composites when the external ac and dc electric field is applied. Under the external ac and dc electric field E-app=E-a(1+sin omegat), the effective coupling nonlinear response can be induced by the cubic nonlinearity of Kerr nonlinear materials at the zero frequency, the finite basic frequency omega, the second and the third harmonics, 2omega and 3omega, and so on. As an example, we have investigated the cylindrical inclusions randomly embedded in a host and derived the formulas of the effective nonlinear dielectric response at harmonics in dilute limit. For a higher concentration of inclusions, we have proposed a nonlinear effective-medium approximation by introducing the general effective nonlinear response. With the relationships between the effective nonlinear response at harmonics and the general effective nonlinear response, we have derived a set of formulas of the effective nonlinear dielectric responses at harmonics for a larger volume fraction. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between monthly sea-level data measured at stations located along the Chinese coast and concurrent large-scale atmospheric forcing in the period 1960-1990 is examined. It is found that sea-level varies quite coherently along the whole coast, despite the geographical extension of the station set. A canonical correlation analysis between sea-level and sea-level pressure (SLP) indicates that a great part of the sea-level variability can be explained by the action of the wind stress on the ocean surface. The relationship between sea-level and sea-level pressure is analyzed separately for the summer and winter half-years. In winter, one factor affecting sea-level variability at all stations is the SLP contrast between the continent and the Pacific Ocean, hence the intensity of the winter Monsoon circulation. Another factor that affects coherently all stations is the intensity of the zonal circulation at mid-latitudes. In the summer half year, on the other hand, the influence of SLP on sea-level is spatially less coherent: the stations in the Yellow Sea are affected by a more localized circulation anomaly pattern, whereas the rest of the stations is more directly connected to the intensity of the zonal circulation. Based on this analysis, statistical models (different for summer and winter) to hindcast coastal sealevel anomalies from the large-scale SLP field are formulated. These models have been tested by fitting their internal parameters in a test period and reproducing reasonably the sea-level evolution in an independent period. These statistical models are also used to estimate the contribution of the changes of the atmospheric circulation on sea-level along the Chinese coast in an altered climate. For this purpose the ouput of 150 year-long experiment with the coupled ocean-atmosphere model ECHAM1-LSG has been analyzed, in which the atmospheric concentration of greenhouse gases was continuously increased from 1940 until 2090, according to the Scenario A projection of the Intergovermental Panel on Climate Change. In this experiment the meridional (zonal) circulation relevant for sea-level tends to become weaker (stronger) in the winter half year and stronger (weaker) in summer. The estimated contribution of this atmospheric circulation changes to coastal sea-level is of the order of a few centimeters at the end of the integration, being in winter negative in the Yellow Sea and positive in the China Sea with opposite signs in the summer half-year.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stokes drift is the main source of vertical vorticity in the ocean mixed layer. In the ways of Coriolis - Stokes forcing and Langmuir circulations, Stokes drift can substantially affect the whole mixed layer. A modified Mellor-Yamada 2.5 level turbulence closure model is used to parameterize its effect on upper ocean mixing conventionally. Results show that comparing surface heating with wave breaking, Stokes drift plays the most important role in the entire ocean mixed layer, especially in the subsurface layer. As expected, Stokes drift elevates both the dissipation rate and the turbulence energy in the upper ocean mixing. Also, influence of the surface heating, wave breaking and wind speed on Stokes drift is investigated respectively. Research shows that it is significant and important to assessing the Stokes drift into ocean mixed layer studying. The laboratory observations are supporting numerical experiments quantitatively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main modes of interannal variabilities of thermocline and sea surface wind stress in the tropical Pacific and their interactions are investigated, which show the following results. (1) The thermocline anomalies in the tropical Pacific have a zonal dipole pattern with 160 W as its axis and a meridional seesaw pattern with 6-8 degrees N as its transverse axis. The meridional oscillation has a phase lag of about 90 to the zonal oscillation, both oscillations get together to form the El Nino/La Nina cycle, which behaves as a mixed layer water oscillates anticlockwise within the tropical Pacific basin between equator and 12 degrees N. (2) There are two main patterns of wind stress anomalies in the tropical Pacific, of which the first component caused by trade wind anomaly is characterized by the zonal wind stress anomalies and its corresponding divergences field in the equatorial Pacific, and the abnormal cross- equatorial flow wind stress and its corresponding divergence field, which has a sign opposite to that of the equatorial region, in the off-equator of the tropical North Pacific, and the second component represents the wind stress anomalies and corresponding divergences caused by the ITCZ anomaly. (3) The trade winds anomaly plays a decisive role in the strength and phase transition of the ENSO cycle, which results in the sea level tilting, provides an initial potential energy to the mixed layer water oscillation, and causes the opposite thermocline displacement between the west side and east side of the equator and also between the equator and 12 degrees N of the North Pacific basin, therefore determines the amplitude and route for ENSO cycle. The ITCZ anomaly has some effects on the phase transition. (4) The thermal anomaly of the tropical western Pacific causes the wind stress anomaly and extends eastward along the equator accompanied with the mixed layer water oscillation in the equatorial Pacific, which causes the trade winds anomaly and produces the anomalous wind stress and the corresponding divergence in favor to conduce the oscillation, which in turn intensifies the oscillation. The coupled system of ocean-atmosphere interactions and the inertia gravity of the mixed layer water oscillation provide together a phase-switching mechanism and interannual memory for the ENSO cycle. In conclusion, the ENSO cycle essentially is an inertial oscillation of the mixed layer water induced by both the trade winds anomaly and the coupled ocean-atmosphere interaction in the tropical Pacific basin between the equator and 12 degrees N. When the force produced by the coupled ocean-atmosphere interaction is larger than or equal to the resistance caused by the mixed layer water oscillation, the oscillation will be stronger or maintain as it is, while when the force is less than the resistance, the oscillation will be weaker, even break.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

温度跃层是反映海洋温度场的重要物理特性指标,对水下通讯、潜艇活动及渔业养殖、捕捞等有重要影响。本文利用中国科学院海洋研究所“中国海洋科学数据库”在中国近海及西北太平洋(110ºE-140ºE,10ºN-40ºN)的多年历史资料(1930-2002年,510143站次),基于一种改进的温跃层判定方法,分析了该海域温跃层特征量的时空分布状况。同时利用Princeton Ocean Model(POM),对中国近海,特别是东南沿海的水文结构进行了模拟,研究了海洋水文环境对逆温跃层的影响。最后根据历史海温观测资料,利用EOF分解统计技术,提出了一种适于我国近海及毗邻海域,基于现场有限层实测海温数据,快速重构海洋水温垂直结构的统计预报方法,以达到对现场温跃层的快速估计。 历史资料分析结果表明,受太阳辐射和风应力的影响,20°N以北研究海域,温跃层季节变化明显,夏季温跃层最浅、最强,冬季相反,温跃层厚度的相位明显滞后于其他变量,其在春季最薄、秋季最厚。12月份到翌年3月份,渤、黄及东海西岸,呈无跃层结构,西北太平洋部分海域从1月到3月份,也基本无跃层结构。在黄海西和东岸以及台湾海峡附近的浅滩海域,由于风力搅拌和潮混合作用,温跃层出现概率常年较低。夏季,海水层化现象在近海陆架海域得到了加强,陆架海域温跃层强度季节性变化幅度(0.31°C/m)明显大于深水区(约0.05°C/m),而前者温跃层深度和厚度的季节性变化幅度小于后者。20°N以南研究海域,温跃层季节变化不明显。逆温跃层主要出现在冬、春季节(10月-翌年5月)。受长江冲淡水和台湾暖流的影响,东南沿海区域逆温跃层持续时间最长,出现概率最大,而在山东半岛北及东沿岸、朝鲜半岛西及北岸,逆温跃层消长过程似乎和黄海暖流有关。多温跃层结构常年出现于北赤道流及对马暖流区。在黑潮入侵黄、东、南海的区域,多温跃层呈现明显不同的季节变化。在黄海中部,春季多温跃层发生概率高于夏季和秋季,在东海西部,多跃层主要出现在夏季,在南海北部,冬季和春季多温跃层发生概率大于夏季和秋季。这些变化可能主要受海表面温度变化和风力驱动的表层流的影响。 利用Princeton Ocean Model(POM),对中国东南沿海逆温跃层结构进行了模拟,模拟结果显示,长江冲淡水的季节性变化以及夏季转向与实际结果符合较好,基本再现了渤、黄、东海海域主要的环流、温盐场以及逆温跃层的分布特征和季节变化。通过数值实验发现,若无长江、黄河淡水输入,则在整个研究海域基本无逆温跃层出现,因此陆源淡水可能是河口附近逆温跃层出现的基本因素之一。长江以及暖流(黑潮和台湾暖流)流量的增加,均可在不同程度上使逆温跃层出现概率及强度、深度和厚度增加,且暖流的影响更加明显。长江对东南沿海逆温跃层的出现,特别是秋季到冬季初期,有明显的影响,使长江口海域逆温跃层位置偏向东南。暖流对于中国东南沿海的逆温跃层结构,特别是初春时期,有较大影响,使长江口海域的逆温跃层位置向东北偏移。 通过对温跃层长期变化分析得出,黄海冷水团区域,夏季温跃层强度存在3.8年左右的年际变化及18.9年左右的年代际变化,此变化可能主要表现为对当年夏季和前冬东亚地区大气气温的热力响应。东海冷涡区域,夏季温跃层强度存在3.7年的年际变化,在El Nino年为正的强度异常,其可能主要受局地气旋式大气环流变异所影响。谱分析同时表明,该海域夏季温跃层强度还存在33.2年的年代际变化,上世纪70年代中期,温跃层强度由弱转强,而此变化可能与黑潮流量的年代际变化有关。 海洋水温垂直结构的统计预报结果显示,EOF分解的前四个主分量即能够解释原空间点温度距平总方差的95%以上,以海洋表层附近观测资料求解的特征系数推断温度垂直结构分布的结果最稳定。利用东海陆架区、南海深水区和台湾周边海域三个不同区域的实测CTD样本廓线资料,对重构模型的检验结果表明,重构与实测廓线的相关程度超过95%的置信水平。三个区重构与实测温度廓线值的平均误差分别为0.69℃,0.52℃,1.18℃,平均重构廓线误差小于平均气候偏差,统计模式可以很好的估算温度廓线垂直结构。东海陆架海区温度垂直重构廓线与CTD观测廓线获得的温跃层结果对比表明,重构温跃层上界、下界深度和强度的平均绝对误差分别为1.51m、1.36m和0.17℃/m,它们的平均相对误差分别为24.7%、8.9%和22.6%,虽然温跃层深度和强度的平均相对误差较大,但其绝对误差量值较小。而在南海海区,模型重构温跃层上界、下界和强度的平均绝对预报误差分别为4.1m、27.7m和0.007℃/m,它们的平均相对误差分别为16.1%、16.8%和9.5%,重构温跃层各特征值的平均相对误差都在20%以内。虽然南海区温跃层下界深度平均绝对预报误差较大,但相对于温跃层下界深度的空间尺度变化而言(平均温跃层下界深度为168m),平均相对误差仅为16.8%。因此说模型重构的温度廓线可以达到对我国陆架海域、深水区温跃层的较好估算。 基于对历史水文温度廓线观测资料的分析及自主温跃层统计预报模型,研制了实时可利用微机简单、快捷地进行温跃层估算及查询的可视化系统,这是迄今进行大范围海域温跃层统计与实时预报研究的较系统成果。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We conducted 28 dilution experiments during August-September 2007 to investigate the coupling of growth and microzooplankton grazing rates among ultraphytoplankton populations and the phytoplankton community and their responses to habitat variability (open-ocean oligotrophy, eddy-induced upwelling, and the Mekong River plume) in the western South China Sea. At the community level, standing stocks, growth, and grazing rates were strongly and positively correlated, and were related to the higher abundance of larger phytoplankton cells (diatoms) at stations with elevated chlorophyll concentration. Phytoplankton growth rates were highest (> 2 d(-1)) within an eastward offshore jet at 13 degrees N and at a station influenced by the river plume. Among ultraphytoplankton populations, Prochlorococcus dominated the more oceanic and oligotrophic stations characterized by generally lower biomass and phytoplankton community growth, whereas Synechococcus became more important in mesotrophic areas (eddies, offshore jet, and river plume). The shift to Synechococcus dominance reflected, in part, its higher growth rates (0.87 +/- 0.45 d(-1)) compared to Prochlorococcus (0.65 +/- 0.29 d(-1)) or picophytoeukaryotes (0.54 +/- 0.50 d(-1)). However, close coupling of microbial mortality rates via common predators is seen to play a major role in driving the dominance transition as a replacement of Prochlorococcus, rather than an overprinting of its steady-state standing stock.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the spatial distribution and source of the PCBs in surface sediments of the Southern Yellow Sea (SYS) and influencing factors, such as the sediment characteristics (components, relative proportions and total organic carbon contents), and hydrodynamic conditions were analyzed. PCB concentrations in the surface sediments ranged from 518-5848 pg/g, with average values of 1715 pg/g decreasing sharply compared to last year. In the study area, the PCB pollution level in the middle area was the highest, followed by that of the east coast and the west coast, respectively. Although the PCB level in the coastal areas was lower than that in the middle areas, it was proven in our study that the Yellow Sea obtained PCBs by virtue of river inputs. There was a positive and pertinent correlation between the clay proportion and PCB concentrations, and the increase of the PCB concentrations was directly proportional to the increase of TOC contents, with r = 0.61, but it was contrary to the sediment grain size. Consequently, the factors controlling PCB distribution had direct or indirect relationships with sediment grain size; moreover, the hydrodynamic conditions determined the sediment components and grain size. In conclusion, hydrodynamic conditions of the Yellow Sea were the most important influencing factors effecting the distribution of PCBs in the surface sediments of the SYS. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grazing by domestic herbivores is generally recognized as a major ecological factor and an important evolutionary force in grasslands. Grazing has both extensive and profound effects on individual plants and communities. We investigated the response patterns of Polygonum viviparum species and the species diversity of an alpine shrub meadow in response to long-term livestock grazing by a field manipulative experiment controlling livestock numbers on the Qinghai-Tibet Plateau in China. Here, we hypothesize that within a range of grazing pressure, grazing can alter relative allocation to different plant parts without changing total biomass for some plant species if there is life history trade-offs between plant traits. The same type of communities exposed to different grazing pressures may only alter relative species' abundances or species composition and not vary species diversity because plant species differ in resistant capability to herbivory. The results show that plant height and biomass of different organs differed among grazing treatments but total biomass remained constant. Biomass allocation and absolute investments to both reproduction and growth decreased and to belowground storage increased with increased grazing pressure, indicating the increasing in storage function was attained at a cost of reducing reproduction of bulbils and represented an optimal allocation and an adaptive response of the species to long-term aboveground damage. Moreover, our results showed multiform response types for either species groups or single species along the gradient of grazing intensity. Heavy grazing caused a 13.2% increase in species richness. There was difference in species composition of about 18%-20% among grazing treatment. Shannon-Wiener (H') diversity index and species evenness (E) index did not differ among grazing treatments. These results support our hypothesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Located in the Paleozoic uplift along the southern margin of Tu-Ha basin in eastern Xinjiang, the newly discovered Hongshan Cu-Au deposit occurs in the superimposed Mesozoic volcanic basin upon the north section of later Paleozoic Dananhu-Tousuquan accretionary arc. Kalatage Cu-Au orebelt is controlled by NWW-trend faults, and includes Hongshan and Meiling Cu-Au deposits. The host rocks of Hongshan ore district are mainly rhyolitic-dacitic ignimbrites, whereas Cu-Au mineralization is closely related to quartz porphyry, rhyolitic porphyry and granitic porphyry. Mineralization styles are dominantly veinlet-disseminated and veinlet, occasionally stockwork. The mineral association is chalcopyrite, pyrite, bornite, chalcocite and sphalerite. The hydrothermal alteration consists of silicfication, sericitization, alunitization, pyrophylitization, illitization, hydromuscovitization, and chloritization. Hongshan Cu-Au deposit, on the edge of the desert, is one of the driest areas in eastrn Tianshan. Moreover, the highest temperature has been up to 60℃, and the average rainfall receives only 34.1mm/y. The light rainfall and rapid evaporation in the vicinity of this deposit have allowed the formation of a great variety of water-soluble sulfates. Oxidization zone of this deposit lies on the upper part of primary sulfide orebodies appearing with a depth of 50-60m, which is dominant in sulfate minerals. 1. Based on the field observation, the volcanic and sub-volcanic rock composition, hydrothermal alteration, ore structure and mineralization characteristics, this paper proposed that the Hongshan Cu-Au deposit belongs to a transitional type from high-sulfide epithermal to porphyry Cu-Au deposit, which corresponds with the typical HS-epithermal deposit such as Zijinshan Au-Cu deposit in Fujian Province, SE-China. 2. The Hongshan copper-gold deposit was controlled by the tectonic, stratum, magma activity and volcanic apparatus, whereas Au mineralization is closely related to quartz porphyry, rhyolitic porphyry and fine grained pyritization in hydrothermal activity, and Cu mineralization is closely related to quartz porphyry and hydrothermal explosive breccia. 3. Oxidation zone of Hongshan Cu-Au deposit lies on the upper part of primary sulfide orebodies deposit. 23 sulfate minerals were identified in this work. The results of samples XRD and chemical analysis were furthermore confirmed through thermal, infrared spectrum and mössbauer spectrum analysis. Among those, nine minerals as Ferricopiapite, Cuprocopiapite, Rhomboclase, Parabutlerite, Krausite, Yavapaiite, Metasideronatrite Kroehnkite and Paracoquimbite were founded in China for the first time. And Paracoquimbite was secondly reported in the world (first case reported at 1938 in Chile). 4. EPMA analysis shows that Al impurity in crystal lattice is important to polytype formation of paracoquimbite and coquimbite besides stack fault. 5. Compared with Meiling Cu-Au deposit in the same Kalatage ore belt from the characteristics of δ34S of barite, lithofacies, hydrothermal alteration and homogeneous temperature, Hongshan Cu-Au deposit belongs to the same metallogenic system of HS-epithermal type as Meiling Cu-Au deposit. But Hongshan Cu-Au deposit has less extensive alteration and shallower denudation. 6. Sulfur isotope analyses show that δ34S values of pyrites vary in the range of +1.86‰~+5.69‰, with an average of 3.70‰, mostly in the range of +1.86‰~+3.20‰, and δ34Scp<δ34Spy. Therefore ore-forming fluid of porphyry comes from mantle and was contaminated by the earth’s crust. Sulfur isotope has reached balance in ore-forming process. 7. Sulfur isotope analyses show that δ34S values of sulfates vary in the range of +2.15‰~+6.73‰, with an average of +3.74‰, mostly equals as δ34S values of primary sulfides in Hongshan Cu-Au deposit. So supergene sulfates inherit sulfur of primary sulfide. δ34S values are mostly same in different sulfates. As well as pyrite and chalcopyrite, volcanic hot spring and associated native sulfur underground also provide water medium and sulfur during the formation process of sulfate. 8. According to the EPMA of sample chalcopyrite and pyrite in Hongshan Cu-Au, the value of Cu/Ni is 0.98-34.72, mostly close to the value of 5, which shows that Hongshan deposit is a typical volcanogenic magmaic hypothermal deposit. Au and Ag, Zn, Te and Bi are positive correlation, Cu and Hg, Se, Sb are positive correlation, indicates Au and Cu don’t locate in the factor of mineralization of same mineralization groups. The reasons of gold concentration in the oxidation zone are: 1). Change of redox potential (Eh) makes gold to deposit from the liquid of mineralization zone; 2). PH is one of the most factors of gold’s deposition; 3). Soluble complex and colloid of gold can be adsorbed easily. 9. The biotite and hornblende K-Ar isotopic ages from the wall rock-quartz diorite, biotite granite and monzonite granite are 231.99±3.45Ma, 237.97±2.36Ma and 296.53±6.69Ma respectively. The ore-bearing rhyolitic breccia lava contains breccia of the biotite granite which indicates the volcanism and related Cu-Au mineralization occurred later than the granite, possibly in Mesozoic. K-Ar ages of granitoids in Sanya, Baishiquan and Hongliugou area and Molybdenite Re-Os age of Baishan Mo deposit all are in Triassic. Besides late Paleozoic magmatism, igneous magmatic event of Mesozoic was widespread in eastern Tianshan. 10. The K-Ar age dating indicates that the K-Ar age of Voltaite occurred below surface 1m is 56.02±3.98Ma, K-Ar age of Ferricopiapite occurred below surface 1.5m is 8.62±1.12Ma, K-Ar age of Yavapaiite occurred below surface 14 m is 4.07±0.39Ma, and K-Ar age of Voltaite occurred below surface 10 m is 14.73±1.73Ma. So the age interval of oxidation zone of Hongshan copper-golden bed is between 60 -3.38Ma. Oxidization occurred at Caenozoic era (from 65Ma), which can be identified through comparing with different deposits oxidation zone in other countries. The coupling between global tectonic event and climatic change event which occur from Caenozoic era has some effect on epigeosphere system, which can act on the surface of bed oxidation zone similarly. It induces that the age mentioned above coincide with collision of India-Asia and multistage uplifting of Qinhai-Tibet Plateau happened subsequently. Bed oxidation zone is the effect and record of collision and uplifting of Tibet Plateau. The strong chemical weathering of surface accumulation to which was leaded by PETM event occurred Paleocene and Eocene is the reason of Voltaite sharply rises. On the contrary, Ferricopiapite formed due to the global cold weather. The predecessor did much research through biota, isotopes, susceptibility, but this paper try to use different sulfate mineral instead of climatic change. So the research of sulfate minerals not only indicates a great deal of oxidized zone feature, but also the intergrowth of sulfate minerals may be used to trace paleoenviroment and paleoclimate of oxidation zone. 11. Analysis of the information of alteration and mineralization features of four bore cores, induced activity polarization well logging and Eh-4 geophysical section, deep mineralization anomaly objects of Hongshan ore districts shows low resistance, middle and high polarization, measurements of Eh-4 consecutive conductance section show the existing of concealed porphyry ore body deeper than 450m, on the top of and around rock body there are low resistance body ranged from 100-300Ω•m, this area may be the ore-bearing part. In a word, Hongshan Cu-Au deposit deposit is a combine of upper HS-style epithermal Au deposit and deeper porphyry mineralization system. It has great potential to find large HS-style epithermal-porphyry Au-Cu deposits. This paper consists of seven chapters and twenty seven sections. The geological character of deposit is basic condition in this work. Constitute of oxidation zone, research of sulfate mineral, relation between oxidation and primary zone, K-Ar ages of potassic sulfate are key parts of thesis. Genesis of ore deposit is the further expansion of this research. Analysis of ore-controlling factors is the penetration above basic. Analysis of potential is application of exploration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil-rock mixture (S-RM) refers to one extremely uneven loose rock and soil materials system with certain stone content. Its formation has started since Quaternary and it is composed of block stone, fine grained soil and pore with certain project scale and high strength. S-RM has extensive distribution in nature, especially in southwest China where the geotectonic background is complicated, the fracture activity is developed and the geomorphological characteristics of high mountain and steep gorge area are protuberant. This kind of complicated geologic body has developed wider in these areas. S-RM has obvious difference with the general soil or rock (rock mass) in physical and mechanical properties because its two components-“soil” and “rock-block” has extreme differences in physical and mechanical properties. The proposition of S-RM and its deep research are needed in the modern engineering construction. It is also the necessity in the modern development of rock and soil mechanics. The dissertation starts from the meso-structural characteristics of soil-rock and takes a systematic research on its meso-structural mechanics, deformation and failure mechanism and the stability of S-RM slope. In summary, it achieves the following innovative results and conclusions. There are various views on the conception of S-RM and its classification system. Based on the large number of field tests, the dissertation makes the conception and classification of S-RM more systematic. It systematically proposed the conception of meso-structural mechanics of S-RM. Thus the dissertation has laid a foundation for its deep study. With the fast development of the computer technology and digital image processing theory, digital image processing technology has been successfully applied in many fields and provided reliable technology support for the quantitative description of the structural characteristics of S-RM. Based on the digital image processing technology, the dissertation systematically proposes and developed the quantitative analysis method and quantitative index for the meso-structure of S-RM. The results indicate that the meso-structure such as its internal soil-rock granularity composition, the soil-rock shape and the orientability has obvious self-organization in the macro statistical level. The dissertation makes a systematic research on the physical mechanical properties, deformation and failure mechanism of S-RM based on large field test. It proposes the field test for the underwater S-RM and deduces the 3D data analysis method of in-situ horizontal push-shear test. The result indicates that S-RM has significant phenomenon of shear dilatancy in the shearing process, and its dilatancy will be more obvious with the increased proportion of rock or the decreased confining pressure. The proportion of rock has great effect on the strength of S-RM and rock-block, especially the spatial position of particles with comparatively big size has great effect on the shape and spatial position of the sample shear zone. The dissertation makes some improvements in the single ring infiltration test equipment and its application on the permeability of S-RM. The results indicate that the increasing of rock-block would make it more difficult for the soil to fill in the vacuity between the rock-block and the proportion would increase which would result in the increased permeability coefficient. The dissertation builds the real meso-structural model of S-RM based on the digital image processing technology. By using geometric reconstruction technology, it transfers the structural mode represented by Binary image into CAD format, which makes it possible to introduce the present finite element analysis software to take research on numerical experimental investigation. It systematically realizes leaping research from the image,geometric mode, to meso-structural mechanics numerical experiment. By using this method, the dissertation takes large scale numerical direct-shear test on the section of S-RM. From the mesoscopic perspective, it reveals three extended modes about the shear failure plane of S-RM. Based on the real meso-structural model and by using the numerical simulation test, the character and mechanics of seepage failure of S-RM are studied. At the same time, it builds the real structural mode of the slope based on the analysis about the slope crosssection of S-RM. By using the strength reduction method, it takes the research on the stability of S-RM and gets great achievements. The three dimensional geometric reconstruction technology of rock block is proposed, which provides technical support for the reconstruction of the 3D meso-structural model of S-RM. For the first time, the dissertation builds the stochastic structure model of two-dimensional and three-dimensional polygons or polyhedron based on the stochastic simulation technique of monte carlo method. It breaks the traditional research which restricted to the random generation method of regular polygon and develops the relevant software system (R-SRM2D/3D) which has great effect on meso-structural mechanics of S-RM. Based on the R-SRM software system which randomly generates the meso-structural mode of S-RM according to the different meso-structural characteristics, the dissertation takes a series of research on numerical test of dual axis and real three-axis, systematically analyses the meso destroy system, the effects of meso-structural characteristics such as on the stone content, size composition and block directionality on the macro mechanical behavior and macro-permeability. Then it proposes the expression of the upper and lower limit for the macro-permeability coefficient of the inhomogeneous geomaterials, such as S-RM. By using the strength reduction FEM, the dissertation takes the research on the stability of the slope structural mode of the randomly formed S-RM. The results indicate that generally, the stability coefficient of S-RM slope increases with the increasing of stone content; on the condition of the same stone content, the stability coefficient of slope will be different with different size composition and the space position of large block at the internal slop has great effect on the stability. It suggests that meso-structural characteristics, especially the space position of large block should be considered when analyzing the stability of this kind of slope and strengthening design. Taking Xiazanri S-RM slope as an example, the dissertation proposes the fine modeling of complicated geologic body based on reverse engineering and the generation method of FLAC3D mode. It resolves the bottleneck problem about building the fine structural mode of three-dimensional geological body. By using FLAC3D, the dissertation takes research on the seepage field and the displacement field of Xiazanri S-RM slope in the process of reservoir water level rising and decreasing. By using strength reduction method, it analyses the three-dimension stability in the process of reservoir water level rising and decreasing. The results indicate that the slope stability firstly show downward trend in the process of reservoir water level rising and then rebound to increase; the sudden drawdown of reservoir water level has great effect on the slope stability and this effect will increase with the sudden drawdown amplitude rising. Based on the result of the rock block size analysis of S-RM, and using R-SRM2D the stochastic structure model of Xiazanri S-RM slope is built. By using strength reduction method, the stability of the stochastic structure model is analysis, the results shows that the stability factor increases significantly after considering the block.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A full understanding of failure mechanism, critical hydrological condition, and process of mobilization and deposition of a landslide is essential for optimal design of stabilization measure and forecasting of landslide hazard. This requires a quantitative study of hydrological response of a slope to rainfall through field monitoring, laboratory test and numerical modelling. At 13:40 on September 18, 2002, a fill slope failed following a period of prolonged rain in Shenzhen, resulting in 5 fatalities and 31 injuries. The failed mass with a volume about 2.5×104m3 traveled about 140m on level ground. Field monitoring, laboratory test, theoretical analysis and numerical modelling were carried out to undestand the hydrological response and failure mechanism of this fill slope. This thesis mainly focuses on the following aspects: (1) The hydrological responses and failure processes of slopes under rainfall infiltration were reviewed. Firstly, the factors influencing on the hydrological responses of slopes were analysed. Secondly, the change of stress state of slope soil and modelling methods of slope failure under rainfall infiltration were reviewed. (2) The characteristics of the Yangbaodi landslide and associated rainfall triggering the failure were presented. The failure was characterized by shallow flowslide, due to an increase of ground water table caused by rainfall infiltration. (3) A fully automated instrumentation was carried out to monitor rainfall, and saturated – unsaturated hydrological response of the fill slope, using a raingauge, piezometers, tensiometers and moisture probes. A conceptual hydrogeological model was presented based on field monitoring and borehole data. Analysis of monitoring data showed that the high pore water pressure in fill slope was caused by upward flow of semiconfined groundwater in the moderately decomposed granite. (4) Laboratory and in-situ testing was performed to study the physical and mechanical properties of fills. Isotropically consolidated undrained compression tests and anisotropically consolidated constant shear stress tests were carried out to understand the failure mechanism of the fill slope. It is indicated that loosely compacted soil is of strain-softening behaviour under undrained conditions, accompanied with a rapid increase in excess pore water pressure. In anisotropically consolidated constant shear stress tests, a very small axial strain was required to induce the failure and the excess pore water pressure increased quickly at failure. This indicated that static liquefaction caused by rise in groundwater table due to rainfall infiltration occurred. (5) The hydraulic conductivity of the highly and moderately decomposed granite was estimated using monitering data of pore water pressure. A saturated – unsaturated flow was modeled to study the hydrological response of the fill slope using rainfall records. It was observed that the lagged failure was due to the geological conditions and the discrepancy of hydraulic conductivity of slope soils. The hydraulic conductivity of moderately decomposed granite is relatively higher than the other materials, resulting in a semiconfied groundwater flow in the moderately decomposed granite, and subsequent upward flow into the upper fill layer. When the ground water table in the fill layer was increased to the critical state, the fill slope failed. (6) Numerical exercises were conducted to replay the failure process of the fill slope, based on field monitoring, laboratory and in-situ testing. It was found that the fill slope was mobilized by a rapid transfer of the concentrated shear stress. The movement of failure mass was characterized by viscosity fluid with a gradual increase in velocity. The failure process, including mobilization and subsequent movement and deposition, was studied using numerical methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on multi-principle (such as structures, tectonics and kinematics) exploratory data and related results of continental dynamics in the Tibetan plateau, the author reconstructed the geological-geophysical model of lithospherical structure and tectonic deformation, and the kinetics boundary conditions for the model. Then, the author used the numerical scheme of Fast Lagrangian Analysis of Continua (FLAC), to stimulate the possible process of the stress field and deformational field in the Tibetan plateau and its adjacent area, since the convergence-collision between the Indian continent and Eurasia continent about 50Ma ago. With the above-mentioned results, the author discussed the relationship between crustal movement in shallow layer and the deformational process in interior layers, and its possible dynamic constraints in deep. At the end of the paper, an integrative model has been put forward to explain the outline images of crust-mantle deformation and coupling in the Tibetan Plateau. (1) The characteristics of crust-mantle structure of the Tibetan plateau have been shown to be very complex, and vertical and horizontal difference is significant. The general characteristics of crust-mantle of the Tibetan plateau may be that it's layering in depth direction, and shows blocking from south to north and belting from east to west, mainly according to the results of about 20 seismic sections, such as wide-angle seismic profiles, CMP, seismic tomography and so on. (2) The crust had shortened about 2200km, while the shortening is different for different block from south to north in the Tibetan plateau. It is about 11.5mm/a in Himalayan block, about 9.0mm/a in Lhas-Gangdese block, about 7.0mm/a in Qiangtang block and Songpan-Ganzi-Kekexili block, about 8.0mm/a in Kunlun-Qaidam, and about ll.Omm/a in Qilian block, since the convergence-collision between the Indian continent and Eurasia continent about 50Ma ago. Which - in demonstrates the shortening rate decreases from south to north, but this rate increases near the north edge of the Tibetan plateau. The crust thickening rate is about 0.4mm/a in the whole Tibetan plateau; and this rate is about 0.5mm/a in Himalayan block, about 0.4mm/a in Lhas-Gangdese block, about 0.3mm/a in Qiangtang block, about 0.2mm/a in Songpan-Ganzi-Kekexili block and about O.lmm/a in Kunlun-Qaidam-Qilian block, since the convergence-collision between the Indian continent and Eurasia continent about 50Ma ago. This implies that the thickening rate decreases in the blocks of the Tibetan plateau. From south to north, the displacement of eastern boundary in the Tibetan plateau is about 37mm/a in Himalayan block, about 45mm/a in Lhas-Gangdese block, about 47mm/a in Qiangtang block, about 43mm/a in Songpan-Ganzi-Kekexili block, and about 35mm/a in Kunlun-Qaidam-Qilian block, since the collision-matching between the Indian continent and Eurasia continent had happened about 50Ma ago. This implies that the rate of eastward displacement is biggest in the middle of plateau, and decreases to both sides. The transition of S-N compression stress field in Tibetan Plateau, since about 28Ma+ ago, may be caused by two reasons: On one hand, the movement direction of Eurasia continent changed from northward to southward about 28Ma± ago in the northern plateau. On the other hand, the front belt that is located between India continent's and Eurasia continent's convergence-collision, had moved southward to high Himalayan from Indus-Brahmaputra suture almost at the same time in southern plateau. Affected by the stress field, the earlier tectonics rotated clockwise, NE and NW conjugate strike-slip faults developed, and the SN rift formed. This indicated that the EW movement started. The ratio between upper crust and lower crust of different blocks from south to north in the Tibetan plateau during the process of deformation are as following: about 3.5~5:1 in Himalayan block, about 1~5: 3-4 (which is about 1:3o--4 in south and about 4~5:3 in north) in Lhas-Gangdese block, about 1:3~447mm/a in these blocks: Which is located to the north of Banggong-nujiang suture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are four chapters in this dissertation. The first chapter briefly synthesizes the basic theories, methods and present-day applying situation of environmental magnetism. The second chapter probes into the magnetic mineral diagenesis in the post-glacial muddy sediments from the southeastern South Yellow Sea and its response to marine environmental changes, using the muddy sediment of Core YSDP103 formed in the shelf since about 13 ka BP. The third chapter illustrates the high-resolution early diagenetic processes by investigating the rapidly deposited muddy sediments during the last 6 ka in Cores SSDP-102 and SSDP-103 from the near-shore shelf of Korea Strait. The fourth chapter presents the results of detailed rock magnetic investigation of the surface sediments from the fine-grained depositional area on the outer shelf of the East China Sea in an attempt to provide environmental magnetic evidence for the provenance of the fine-grained deposit. Core YSDP103 was retrieved in the muddy deposit under the cold eddy of the southeastern South Yellow Sea, and the uppermost 29.79 m core represents the muddy sediments formed in the shelf since about 13 ka BP. The lower part from 29.79 to 13.35 m, called Unit A2, was deposited during the period from the post-glacial transgression to the middle Holocene (at about 6 ~(14)C ka BP) when the rising sea level reached its maximum, while the upper part above 13.35 m (called Unit Al) was deposited in a cold eddy associated with the formation of the Yellow Sea Warm Current just after the peak of post-glacial sea level rise. For the the uppermost 29.79 m core, detailed investigation of rock-magnetic properties and analyses of grain sizes and geochemistry were made. The experimental results indicate that the magnetic mineralogy of the core is dominated by magnetite, maghemite and hematite and that, except for the uppermost 2.35 m, the magnetic minerals were subject to reductive diagenesis leading to significant decline of magnetic mineral content and the proportion of low-coercivity component. More importantly, ferrimagnetic iron sulphide (greigite) is found in Unit A2 but absent in Unit Al, suggesting the control of marine environmental conditions on the magnetic mineral diagenesis. Magnetic parameters show abrupt changes across the boundary between the Unit Al and A2, which reflects a co-effect of environmental conditions and primary magnetic components of the sediments on the diagenesis. Alternating zones of high and low magnetic parameters are observed in Unit A2 of Core YSDP103, which is presumably due to periodic changes of the concentration and/or grain size of magnetic minerals carried into the study area. Cores SSDP-102 and SSDP-103, two studied sediment cores from the Korea Strait contain mud sequences (14 m and 32.62 m in thickness) that were deposited during the last 6,000 years. Analyses of grain sizes and geochemistry of the cores have demonstrated that the sediments have uniform lithology and geochemical properties, however, marked down-core changes in magnetic properties suggest that diagenesis has significantly impacted the magnetic properties. An expanded view of early diagenetic reactions that affect magnetic mineral assemblages is evident in these rapidly deposited continental shelf sediments compared to deep-sea sediments. The studied sediments can be divided into four descending intervals, based on magnetic property variations. Interval 1 is least affected by diagenesis and has the highest concentrations of detrital magnetite and hematite, and the lowest solid-phase sulfur contents. Interval 2 is characterized by the presence of paramagnetic pyrite and sharply decreasing magnetite and hematite concentrations, which suggest active reductive dissolution of detrital magnetic minerals, the absolute minimum abundance of magnetite is reached at the end of this interval. Interval 3 is marked by a progressive loss of hematite with depth, and at the base of this interval, 82% to 88% of the hematite component was depleted and the bulk magnetic mineral concentration was reduced to the lowest value in the entire studied mud section. Interval 4 has an increasing down-core enhancement of authigenic greigite, which is interpreted to have formed due to arrested pyritization resulting from consumption of pore water sulfate with depth. This is the first clear demonstration from an active depositional environment for a delay of thousands of years for acquisition of a magnetization carried by greigite. This detailed view of diagenetic processes in continental shelf sediments suggests that studies of geomagnetic field behavior from such sediments should be conducted with care. Paleoceanographic and paleoclimatic studies based on the magnetic properties of shelf sediments with high sedimentation rates like those in the Korea Strait are also unlikely to provide a meaningful signature associated with syn-depositional environmental processes. The rock magnetic properties of the surface sediments from the fine-grained depositional area on the outer shelf of the East China Sea, an area surrounded by sands, are investigated with a view to providing information on the sediment provenance. Multiple magnetic parameters such as magnetic susceptibility (%), anhysteretic remanent magnetization (ARM), saturation rernanent magnetization (SIRM), coercivities of SIRM (Her), and S ratios (relative abundance of low-coercivity magnetic minerals) are measured for all 179 surface samples, and partial representative samples are examined for their magnetic hysteresis parameters, temperature-dependence of magnetic susceptibility and x-ray diffraction spectra. Our research indicates that the magnetic mineralogy is dominated by magnetite with a small amount of hematite and is primarily of pseudo-single domain (PSD) to multidomain (MD) nature with a detrital origin. In the surface sediments, the granulometry of magnetic fractions is basically independent of grain sizes of the sediment containing the magnetic grains, and the composition of magnetic minerals remains almost homogeneous, that is, with a relatively constant ratio of low to high coercivity fraction throughout the area. The magnetic concentration in the study area generally decreases to the east or southeast accompanied by magnetic-particle fining to the east or to the northeast. The geographic pattern of magnetic properties is most reasonably explained by a major source of sediment jointly from the erosion of the old Huanghe River deposit and the discharge of the Changjiang River. The rock magnetic data facilitate understanding of the transport mechanism of fine-grained sediments in the outer shelf of the East China Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Western China is regarded as an assemblage of blocks or microplates. The India/Asia postcollisional kinematics of these blocks has attracted many geologists to pay attentions, especially on the geodynamics and intracontinental deformation of Tibetan and adjoining parts of central Asia. So far there are still many debates on the amount of continental shortening and extrusion within Western China blocks. Paleomagnetism plays a very important role in the paleogeographic reconstruction and depiction of kinematics of the blocks, however the unequilibrium of paleomagentic data obtained from Western China prevents paleomagnetists from studying the kinematics and intracontinental deformation on the Tibetan plateau and the central Asia. Moreover, shallower inclinations observed in the Cretaceous and Cenozoic terrestrial red sediments in central Asia makes it difficult to precisely estimate the northward convergence of Tibetan plateau and its adjacent areas since the onset of the Indian/Asian collision. In this thesis, detailed rock magnetic, chronological and paleomagnetic studies have been carried out on the Tuoyun Basin in the southwestern Tianshan to discuss the possible continental shortening and tectonic movements since the Cretaceous-Tertiary. Ar-Ar geochronological study has been conducted on the upper and lower basalt series from the Tuoyun Basin, yielding that the lower and upper basalt series were extruded during 115-113 Ma and 61.8-56.9 Ma, respectively. Both the age spectrum and inverse isochron show that the samples from the upper and lower basalt series have experienced no significant thermal events since extrusion of the baslts. Rock magnetic studies including temperature dependence of magnetization and susceptibility during a heating-cooling cycle from temperature up to 600 ℃ suggest that the baslt samples from the lower and upper basalt series are ferromagnetically predominant of magnetite and a subordinate hematite with a few sites of titanomagnetite. The predominant magnetic mineral of the intercalated red beds is magnetite and hematite. Anisotropy of magnetic susceptibility shows that both the baslts and the intercalated red beds are unlikely to have undergone significant strain due to compaction or tectonic stress since formation of the rocks. The stable characteristic remanent magnetization (ChRM) isolated from the most samples of the upper and lower basalt series and intercalated red beds, passes fold test at the 99% confidence level. Together with the geochronological results, we interpret the characteristic component as a primary magnetization acquired in the formation of rocks. Some sites from both the upper and lower basalts yielded shallower inclinations than the reference field computed from the Eurasia APW, we prefer to argue that these shallow inclinations might be related to geomagnetic secular variation, whereas the shallow inclination in the intercalated red beds is likely to be related to detrital remanent magnetization. Paleomagnetic results from the early Cretaceous-Paleogene basalts indicate that no significant N-S convergence has taken place between the Tuoyun Basin and the south margin of Siberia. Furthermore, the Cretaceous and Tertiary paleomagnetic results suggest that the Tuoyun Basin was subjected to a local clockwise rotation of 20°-30° with respect to Eurasia since the Paleocene time, which is probably subsequent to the Cenozoic northward compression of the Pamir arc.