996 resultados para tumor-infiltrating lymphocytes
Resumo:
The TNF family ligands BAFF (also called BLyS) and APRIL regulate lymphocyte survival and activation. BAFF binds to three receptors, BAFF-R, TACI and BCMA, whereas APRIL interacts with TACI, BCMA and proteoglycans. The contribution of BAFF and APRIL to B-cell and plasma-cell survival, CD154 (CD40L)-independent antibody isotype switching, germinal center maintenance, T-dependent and T-independent antibody responses, and T cell co-stimulation are relatively well understood. Constitutive BAFF produced by stromal cells determines the size of the peripheral B cell pool, whereas inducible BAFF produced by myeloid and other cells supports local survival of B lymphocytes and can be associated with development of autoimmunity when deregulated.
Resumo:
We compared plasma tumor necrosis factor-alpha (TNF-alpha) levels among asymptomatic/"indeterminate" Chagas disease patients (ASY) and patients across the clinical spectrum of chronic Chagas disease cardiomyopathy (CCC). Idiopathic dilated cardiomyopathy (DCM) patients and normal controls (NC) were included as controls. ASY Chagas disease patients had significantly higher plasma TNF-alpha levels than NC. TNF-alpha levels among severe CCC patients with significant left ventricular (LV) dysfunction were similar to those of DCM patients, showing average 2-fold higher levels than CCC patients without LV dysfunction and ASY patients, and 8-fold higher levels than NC. In Chagas disease, chronic TNF-a production prior to heart failure may play a role in CCC progression.
Resumo:
Previous studies in our laboratory have shown that DBA/2 mice injected i.p. with syngeneic P815 tumor cells transfected with the HLA-CW3 gene (P815-CW3) showed a dramatic expansion of activated CD8+CD62L- T cells expressing exclusively the Vbeta10 segment. We have used this model to study the regulatory mechanisms involved in the development of the CW3-specific CD8+ response, with respect to different routes of immunization. Whereas both intradermal (i.d.) and i.p. immunization of DBA/2 mice with P815-CW3 cells led to a strong expansion of CD8+CD62L-Vbeta10+ cells, only the i.d. route allowed this expansion after immunization with P815 cells transfected with a minigene coding for the antigenic epitope CW3 170-179 (P815 miniCW3). Furthermore, depletion of CD4+ T cells in vivo completely abolished the specific response of CD8+CD62L-Vbeta10+ cells and prevented the rejection of P815-CW3 tumor cells injected i.p., whereas it did not affect CD8S+CD62L-Vbeta10+ cell expansion after i.d. immunization with either P815-CW3 or P815 miniCW3. Finally, the CW3-specific CD8+ memory response was identical whether or not CD4+ T cells were depleted during the primary response. Collectively, these results suggest that the CD8+ T cell response to P815-CW3 tumor cells injected i.p. is strictly dependent upon recognition of a helper epitope by CD4+ T cells, whereas no such requirement is observed for i.d. injection.
Resumo:
Purpose: We investigate a new heat delivery technique for the local treatment of solid tumors. The technique involves injecting a formulation that solidifies to form an implant in situ. This implant entraps superparamagnetic iron oxide nanoparticles (SPIONs) embedded in silica microbeads for magnetically induced moderate hyperthermia. Particle entrapment prevents phagocytosis and distant migration of SPIONs. The implant can be repeatedly heated by magnetic induction. Methods: We evaluated heating and treatment efficacies by means of thermometry and survival studies in nude mice carrying subcutaneous human colocarcinomas. At day 1, we injected the formulation into the tumor. At day 2, a single 20-min hyperthermia treatment was delivered by 141-kHz magnetic induction using field strengths of 9 to 12 mT under thermometry. Results: SPIONs embedded in silica microbeads were effectively confined within the implant at the injection site. Heat-induced necro-apoptosis was assessed by histology on day 3. On average, 12 mT resulted in tumor temperature of 47.8 degrees C, and over 70% tumor necrosis that correlated to the heat dose (AUC = 282 degrees C.min). In contrast, a 9-mT field strength induced tumoral temperature of 40 degrees C (AUC = 131 degrees C.min) without morphologically identifiable necrosis. Survival after treatment with 10.5 or 12 mT fields was significantly improved compared to non-implanted and implanted controls. Median survival times were 27 and 37 days versus 12 and 21 days respectively. Conclusion: Five of eleven mice (45%) of the 12 mT group survived one year without any tumor recurrence, holding promise for tumor therapy using magnetically induced moderate hyperthermia through injectable implants.
Resumo:
Kaposi's sarcoma-associated herpesvirus (KSHV) specific T cell responses and KSHV viremia were analyzed in seven HIV-infected patients with active Kaposi's sarcoma lesions who initiated highly active antiretroviral therapy, and were compared between patients with improved Kaposi's sarcoma and those with progressive Kaposi's sarcoma requiring further systemic chemotherapy. Patients with controlled Kaposi's sarcoma disease demonstrated undetectable Kaposi's sarcoma viremia together with KSHV-specific CD8 T cells secreting interferon-gamma and tumor necrosis factor-alpha, whereas progressors showed increasing viremia with weak or no T-cell responses. These data point toward a potential role of KSHV-specific immunity in the control of AIDS-associated Kaposi's sarcoma.
Resumo:
B cell activating factor of the tumor necrosis factor (TNF) family (BAFF) and a proliferation-inducing ligand (APRIL) are closely related ligands within the TNF superfamily that play important roles in B lymphocyte biology. Both ligands share two receptors--transmembrane activator and calcium signal--modulating cyclophilin ligand interactor (TACI) and B cell maturation antigen (BCMA)--that are predominantly expressed on B cells. In addition, BAFF specifically binds BAFF receptor, whereas the nature of a postulated APRIL-specific receptor remains elusive. We show that the TNF homology domain of APRIL binds BCMA and TACI, whereas a basic amino acid sequence (QKQKKQ) close to the NH2 terminus of the mature protein is required for binding to the APRIL-specific "receptor." This interactor was identified as negatively charged sulfated glycosaminoglycan side chains of proteoglycans. Although T cell lines bound little APRIL, the ectopic expression of glycosaminoglycan-rich syndecans or glypicans conferred on these cells a high binding capacity that was completely dependent on APRIL's basic sequence. Moreover, syndecan-1-positive plasma cells and proteoglycan-rich nonhematopoietic cells displayed high specific, heparin-sensitive binding to APRIL. Inhibition of BAFF and APRIL, but not BAFF alone, prevented the survival and/or the migration of newly formed plasma cells to the bone marrow. In addition, costimulation of B cell proliferation by APRIL was only effective upon APRIL oligomerization. Therefore, we propose a model whereby APRIL binding to the extracellular matrix or to proteoglycan-positive cells induces APRIL oligomerization, which is the prerequisite for the triggering of TACI- and/or BCMA-mediated activation, migration, or survival signals.
Resumo:
RESUME La télomérase est une enzyme dite "d'immortalité" qui permet aux cellules de maintenir la longueur de leurs télomères, ce qui confère une capacité de réplication illimitée aux cellules reproductrices et cancéreuses. A l'inverse, les cellules somatiques normales, qui n'expriment pas la télomérase, ont une capacité de réplication limitée. La sous-unité catalytique de la télomérase, hTERT, est définie comme le facteur limitant l'activité télomérasique. Entre activateurs et répresseurs, le rôle de la méthylation de l'ADN et de l'acétylation des histones, de nombreux modèles ont été suggérés. La découverte de l'implication de CTCF dans la régulation transcriptionnelle de hTERT explique en partie le mécanisme de répression de la télomérase dans la plupart des cellules somatiques et sa réactivation dans les cellules tumorales. Dans les cellules télomérase-positives, l'activité inhibitrice de CTCF est bloquée par un mécanisme dépendent ou non de la méthylation. Dans la plupart des carcinomes, une hyperméthylation de la région 5' de hTERT bloque l'effet inhibiteur de CTCF, alors qu'une petite région hypométhylée permet un faible niveau de transcription du gène. Nous avons démontré que la protéine MBD2 se lie spécifiquement sur la région 5' méthylée de hTERT dans différentes lignées cellulaires et qu'elle est impliquée dans la répression partielle de la transcription de hTERT dans les cellules tumorales méthylées. Par contre, nous avons montré que dans les lymphocytes B normaux et néoplasiques, la régulation de hTERT est indépendante de la méthylation. Dans ces cellules, le facteur PAX5 se lie sur la région 5' de hTERT en aval du site d'initiation de la traduction (ATG). L'expression exogène de PAX5 dans les cellules télomérase-négatives active la transcription de hTERT, alors que la répression de PAX5 dans les cellules lymphomateuses inhibe la transcription du gène. PAX5 est donc directement impliqué dans l'activation de l'expression de hTERT dans les lymphocytes B exprimant la télomérase. Ces résultats révèlent des différences entre les niveaux de méthylation de hTERT dans les cellules de carcinomes et les lymphocytes B exprimant la télomérase. La méthylation de hTERT en tant que biomarqueur de cancer a été évaluée, puis appliquée à la détection de métastases. Nous avons ainsi montré que la méthylation de hTERT est positivement corrélée au diagnostic cytologique dans les liquides céphalorachidiens. Nos résultats conduisent à un modèle de régulation de hTERT, qui aide à comprendre comment la transcription de ce gène est régulée par CTCF, avec un mécanisme lié ou non à la méthylation du gène hTERT. La méthylation de hTERT s'est aussi révélée être un nouveau et prometteur biomarqueur de cancer. SUMMARY Human telomerase is an "immortalizing" enzyme that enables cells to maintain telomere length, allowing unlimited replicative capacity to reproductive and cancer cells. Conversely, normal somatic cells that do not express telomerase have a finite replicative capacity. The catalytic subunit of telomerase, hTERT, is defined as the limiting factor for telomerase activity. Between activators and repressors, and the role of DNA methylation and histone acetylation, an abundance of hTERT regulatory models have been suggested. The discovery of the implication of CTCF in the transcriptional regulation of hTERT in part explained the mechanism of silencing of telomerase in most somatic cells and its reactivation in neoplastic cells. In telomerase-positive cells, the inhibitory activity of CTCF is blocked by methylation-dependent and -independent mechanisms. In most carcinoma cells, hypermethylation of the hTERT 5' region has been shown to block the inhibitory effect of CTCF, while a short hypomethylated region allows a low transcription level of the gene. We have demonstrated that MBD2 protein specifically binds the methylated 5' region of hTERT in different cell lines and is therefore involved in the partial repression of hTERT transcription in methylated tumor cells. In contrast, we have shown that in normal and neoplastic B cells, hTERT regulation is methylation-independent. The PAX5 factor has been shown to bind to the hTERT 5'region downstream of the ATG translational start site. Ectopic expression of PAX5 in telomerase-negative cells or repression of PAX5 expression in B lymphoma cells respectively activated and repressed hTERT transcription. Thus, PAX5 is strongly implicated in hTERT expression activation in telomerase-positive B cells. These results reveal differences between the hTERT methylation patterns in telomerase-positive carcinoma cells and telomerase-positive normal B cells. The potential of hTERT methylation as a cancer biomarker was evaluated and applied to the detection of metastasis. We have shown that hTERT methylation correlates with the cytological diagnosis in cerebrospinal fluids. Our results suggest a model of hTERT gene regulation, which helps us to better understand how hTERT transcription is regulated by CTCF in methylation-dependant and independent mechanisms. Our data also indicate that hTERT methylation is a promising new cancer biomarker.
Resumo:
Serum-free aggregating cell cultures of fetal rat telencephalon treated with the potent tumor promoter phorbol 12-myristate 13-acetate (PMA) showed a marked, rapid, and sustained increase in the activity of the astrocyte-specific enzyme glutamine synthetase (GS). This effect was accompanied by a small increase in RNA synthesis and a progressive reduction in DNA synthesis. Only mitotically active cultures were responsive to PMA treatments. Since in aggregate cultures astrocytes are the preponderant cell type, both in number and mitotic activity, it can be concluded that PMA induces and/or enhances the terminal differentiation of astrocytes. The developmental expression of GS was also greatly stimulated by mezerein, a potent nonphorbol tumor promoter, but not by 4 alpha-phorbol 12,13-didecanoate, a nonpromoting phorbol ester. Since both tumor promoters, PMA and mezerein, are potent and specific activators of C-kinase, it is suggested that C-kinase plays a regulatory role in the growth and differentiation of normal astrocytes.
Resumo:
OBJECTIVE: To evaluate the initiation of and response to tumor necrosis factor (TNF) inhibitors for axial spondyloarthritis (axSpA) in private rheumatology practices versus academic centers. METHODS: We compared newly initiated TNF inhibition for axSpA in 363 patients enrolled in private practices with 100 patients recruited in 6 university hospitals within the Swiss Clinical Quality Management (SCQM) cohort. RESULTS: All patients had been treated with ≥ 1 nonsteroidal antiinflammatory drug and > 70% of patients had a baseline Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) ≥ 4 before anti-TNF agent initiation. The proportion of patients with nonradiographic axSpA (nr-axSpA) treated with TNF inhibitors was higher in hospitals versus private practices (30.4% vs 18.7%, p = 0.02). The burden of disease as assessed by patient-reported outcomes at baseline was slightly higher in the hospital setting. Mean levels (± SD) of the Ankylosing Spondylitis Disease Activity Score were, however, virtually identical in private practices and academic centers (3.4 ± 1.0 vs 3.4 ± 0.9, p = 0.68). An Assessment of SpondyloArthritis international Society (ASAS40) response at 1 year was reached for ankylosing spondylitis in 51.7% in private practices and 52.9% in university hospitals (p = 1.0) and for nr-axSpA in 27.5% versus 25.0%, respectively (p = 1.0). CONCLUSION: With the exception of a lower proportion of patients with nr-axSpA newly treated with anti-TNF agents in private practices in comparison to academic centers, adherence to ASAS treatment recommendations for TNF inhibition was equally high, and similar response rates to TNF blockers were achieved in both clinical settings.
Resumo:
The CD3ε cytoplasmic tail contains a conserved proline-rich sequence (PRS) that influences TCR-CD3 expression and signaling. Although the PRS can bind the SH3.1 domain of the cytosolic adapter Nck, whether the PRS is constitutively available for Nck binding or instead represents a cryptic motif that is exposed via conformational change upon TCR-CD3 engagement (CD3Δc) is currently unresolved. Furthermore, the extent to which a cis-acting CD3ε basic amino acid-rich stretch (BRS), with its unique phosphoinositide-binding capability, might impact PRS accessibility is not clear. In this study, we found that freshly harvested primary thymocytes expressed low to moderate basal levels of Nck-accessible PRS ("open-CD3"), although most TCR-CD3 complexes were inaccessible to Nck ("closed-CD3"). Ag presentation in vivo induced open-CD3, accounting for half of the basal level found in thymocytes from MHC(+) mice. Additional stimulation with either anti-CD3 Abs or peptide-MHC ligands further elevated open-CD3 above basal levels, consistent with a model wherein antigenic engagement induces maximum PRS exposure. We also found that the open-CD3 conformation induced by APCs outlasted the time of ligand occupancy, marking receptors that had been engaged. Finally, CD3ε BRS-phosphoinositide interactions played no role in either adoption of the initial closed-CD3 conformation or induction of open-CD3 by Ab stimulation. Thus, a basal level of open-CD3 is succeeded by a higher, induced level upon TCR-CD3 engagement, involving CD3Δc and prolonged accessibility of the CD3ε PRS to Nck.
Resumo:
A major goal in the treatment of acute ischemia of a vascular territory is to restore blood flow to normal values, i.e. to "reperfuse" the ischemic vascular bed. However, reperfusion of ischemic tissues is associated with local and systemic leukocyte activation and trafficking, endothelial barrier dysfunction in postcapillary venules, enhanced production of inflammatory mediators and great lethality. This phenomenon has been referred to as "reperfusion injury" and several studies demonstrated that injury is dependent on neutrophil recruitment. Furthermore, ischemia and reperfusion injury is associated with the coordinated activation of a series of cytokines and adhesion molecules. Among the mediators of the inflammatory cascade released, TNF-alpha appears to play an essential role for the reperfusion-associated injury. On the other hand, the release of IL-10 modulates pro-inflammatory cytokine production and reperfusion-associated tissue injury. IL-1beta, PAF and bradykinin are mediators involved in ischemia and reperfusion injury by regulating the balance between TNF-alpha and IL-10 production. Strategies that enhance IL-10 and/or prevent TNF-alpha concentration may be useful as therapeutic adjuvants in the treatment of the tissue injury that follows ischemia and reperfusion.
Resumo:
T lymphocyte-mediated pathogenesis is common to a variety of enteropathies, including giardiasis, cryptosporidiosis, bacterial enteritis, celiac's disease, food anaphylaxis, and Crohn's disease. In giardiasis as well as in these other disorders, a diffuse loss of microvillous brush border, combined or not with villus atrophy, is responsible for disaccharidase insufficiencies and malabsorption of electrolytes, nutrients, and water, which ultimately cause diarrheal symptoms. Other mucosal changes may include crypt hyperplasia and increased infiltration of intra-epithelial lymphocytes. Recent studies using models of giardiasis have shed new light on the immune regulation of these abnormalities. Indeed, experiments using an athymic mouse model of infection have found that these epithelial injuries were T cell-dependent. Findings from further research indicate that that the loss of brush border surface area, reduced disaccharidase activities, and increase crypt-villus ratios are mediated by CD8+ T cells, whereas both CD8+ and CD4+ small mesenteric lymph node T cells regulate the influx of intra-epithelial lymphocytes. Future investigations need to characterize the CD8+ T cell signaling cascades that ultimately lead to epithelial injury and malfunction in giardiasis and other malabsorptive disorders of the intestine.
Resumo:
PURPOSE Desmoid tumors are mesenchymal fibroblastic/myofibroblastic proliferations with locoregional aggressiveness and high ability to recur after initial treatment. We present the results of the largest series of sporadic desmoid tumors ever published to determine the prognostic factors of these rare tumors. PATIENTS AND METHODS Four hundred twenty-six patients with a desmoid tumor at diagnosis were included, and the following parameters were studied: age, sex, delay between first symptoms and diagnosis, tumor size, tumor site, previous history of surgery or trauma in the area of the primary tumor, surgical margins, and context of abdominal wall desmoids in women of child-bearing age during or shortly after pregnancy. We performed univariate and multivariate analysis for progression-free survival (PFS). Results In univariate analysis, age, tumor size, tumor site, and surgical margins (R2 v R0/R1) had a significant impact on PFS. PFS curves were not significantly different for microscopic assessment of surgical resection quality (R0 v R1). In multivariate analysis, age, tumor size, and tumor site had independent values. Three prognostic groups for PFS were defined on the basis of the number of independent unfavorable prognostic factors (0 or 1, 2, and 3). CONCLUSION This study clearly demonstrates that there are different prognostic subgroups of desmoid tumors that could benefit from different therapeutic strategies, including a wait-and-see policy.