912 resultados para transgenic zebrafish
Resumo:
Peanut, one of the world's most important oilseed crops, has a narrow germplasm base and lacks sources of resistance to several major diseases. The species is considered recalcitrant to transformation, with few confirmed transgenic plants upon particle bombardment or Agrobacterium treatment. Reported transformation methods are limited by low efficiency, cultivar specificity, chimeric or infertile transformants, or availability of explants. Here we present a method to efficiently transform cultivars in both botanical types of peanut, by (1) particle bombardment into embryogenic callus derived from mature seeds, (2) escape-free (not stepwise) selection for hygromycin B resistance, (3) brief osmotic desiccation followed by sequential incubation on charcoal and cytokinin-containing media; resulting in efficient conversion of transformed somatic embryos into fertile, non-chimeric, transgenic plants. The method produces three to six independent transformants per bombardment of 10 cm(2) embryogenic callus. Potted, transgenic plant lines can be regenerated within 9 months of callus initiation, or 6 months after bombardment. Transgene copy number ranged from one to 20 with multiple integration sites. There was ca. 50% coexpression of hph and luc or uidA genes coprecipitated on separate plasmids. Reporter gene (luc) expression was confirmed in T-1 progeny from each of six tested independent transformants. Insufficient seeds were produced under containment conditions to determine segregation ratios. The practicality of the technique for efficient cotransformation with selected and unselected genes is demonstrated using major commercial peanut varieties in Australia (cv. NC-7, a virginia market type) and Indonesia (cv. Gajah, a spanish market type).
Resumo:
Hepatitis C infection is associated with the development of hepatocellular carcinoma, and progress has been made in a number of areas. Transgenic mice lines expressing the hepatitis C core protein develop hepatic steatosis, adenomas, and hepatocellular carcinomas, with no significant hepatitis or fibrosis. This implies that hepatitis C can lead directly to malignant transformation, A new lesion, irregular regeneration, has been described in chronic hepatitis C infection and is associated with a 15-fold increase in the relative risk of developing hepatocellular carcinoma. A minority of patients with hepatitis C-related hepatocellular carcinoma have intense lymphocytic infiltration of the cancer, a feature associated with a better prognosis, Several studies have confirmed the association between large cell dysplasia and hepatocellular carcinoma, However, large cell dysplasia may not be a premalignant lesion and instead may be a marker for premalignant alterations elsewhere in the liver. Oral contraceptives previously have been linked to an increased risk of hepatocellular carcinoma. A large multicenter European case-control study has shown minimal increased risk of hepatocellular carcinoma with use of steroidal contraception. Tamoxifen had shown promise in the management of advanced hepatocellular carcinoma. However, a randomized placebo-controlled study of 477 patients with hepatocellular carcinoma found no benefit from tamoxifen, In a preliminary study, however, octreotide has shown improved survival and quality of life in patients with advanced hepatocellular carcinoma, Finally, interferon treatment continues to be linked to a reduced risk of hepatocellular carcinoma in patients with hepatitis C, These studies generally are not randomized, and a randomized prospective study is required to address this issue. (C) 1999 Lippincott Williams & Wilkins, Inc.
Resumo:
A 1369 bp DNA fragment (Sc) was isolated from a full-length clone of sugarcane bacilliform badnavirus (ScBV) and was shown to have promoter activity in transient expression assays using monocot (banana, maize, millet and sorghum) and dicot plant species (tobacco, sunflower, canola and Nicotiana benthamiana). This promoter was also tested for stable expression in transgenic banana and tobacco plants. These experiments showed that this promoter could drive high-level expression of the beta-glucuronidase (GUS) reporter gene in most plant cells. The expression level was comparable to the maize ubiquitin promoter in standardised transient assays in maize. In transgenic banana plants the expression levels were variable for different transgenic lines but was generally comparable with the activities of both the maize ubiquitin promoter and the enhanced cauliflower mosaic virus (CaMV) 35S promoter. The Sc promoter appears to express in a near-constitutive manner in transgenic banana and tobacco plants. The promoter from sugarcane bacilliform virus represents a useful tool for the high-level expression of foreign genes in both monocot and dicot transgenic plants that could be used similarly to the CaMV 35S or maize polyubiquitin promoter.
Resumo:
A scaffold of axons consisting of a pair of longitudinal tracts and several commissures is established during early development of the vertebrate brain. We report here that NOC-2, a cell surface carbohydrate, is selectively expressed by a subpopulation of growing axons in this scaffold in Xenopus. NOC-2 is present on two glycoproteins, one of which is a novel glycoform of the neural cell adhesion molecule N-CAM. When the function of NOC-2 was perturbed using either soluble carbohydrates or anti-NOC-2 antibodies, axons expressing NOC-2 exhibited aberrant growth at specific points in their pathway. NOC-2 is the first-identified axon guidance molecule essential for development of the axon scaffold in the embryonic vertebrate brain.
Resumo:
We generated transgenic sugarcane plants that express an albicidin detoxifying gene (albD), which was cloned from a bacterium that provides biocontrol against leaf scald disease. Plants with albicidin detoxification capacity equivalent to 1-10 ng of AlbD enzyme per mg of leaf protein did not develop chlorotic disease symptoms in inoculated leaves, whereas all untransformed control plants developed severe symptoms. Transgenic lines with high AlbD activity in young stems were also protected against systemic multiplication of the pathogen, which is the precursor to economic disease. We have shown that genetic modification to express a toxin-resistance gene can confer resistance to both disease symptoms and multiplication of a toxigenic pathogen in its host.
Resumo:
MiAMP1 is a recently discovered 76 amino acid residue, highly basic protein from the nut kernel of:Macadamia integrifolia which possesses no sequence homology to any known protein and inhibits the growth of several microbial plant pathogens in vitro while having no effect on mammalian or plant cells. It is considered to be a potentially useful tool for the genetic engineering of disease resistance in transgenic crop plants and for the design of new fungicides. The three-dimensional structure of MiAMP1 was determined through homonuclear and heteronuclear (N-15) 2D NMR spectroscopy and subsequent simulated annealing calculations with the ultimate aim of understanding the structure-activity relationships of the protein. MiAMP1 is made up of eight beta-strands which are arranged in two Greek key motifs. These Greek key motifs associate to form a Greek key beta-barrel. This structure is unique amongst plant antimicrobial proteins and forms a new class which we term the beta-barrelins. Interestingly, the structure of MiAMP1 bears remarkable similarity to a yeast killer toxin from Williopsis mrakii. This toxin acts by inhibiting beta-glucan synthesis and thereby cell wall construction in sensitive strains of yeast. The structural similarity of MiAMP1 and WmKT, which originate from plant and fungal phyla respectively, may reflect a similar mode of action. (C) 1999 Academic Press.
Resumo:
We have generated transgenic mice that harbor a 140 kb genomic fragment of the human BRCA1 locus (TgN.BRCA1(GEN)). We find that the transgene directs appropriate expression of human BRCA1 transcripts in multiple mouse tissues, and that human BRCA1 protein is expressed and stabilized following exposure to DIVA damage, Such mice are completely normal, with no overt signs of BRCA1 toxicity commonly observed when BRCA1 is expressed from heterologous promoters. Most importantly, however, the transgene rescues the otherwise lethal phenotype associated with the targeted hypomorphic allele (Brca1(Delta exIISA)). Brca1(-/-); TgN.BRCA1(GEN) bigenic animals develop normally and can be maintained as a distinct line. These results show that a 140 kb fragment of chromosome 17 contains all elements necessary for the correct expression, localization, and function of the BRCA1 protein, Further, the model provides evidence that function and regulation of the human BRCA1 gene can be studied and manipulated in a genetically tractable mammalian system.
Resumo:
Two small RNAs regulate the timing of Caenorhabditis elegans development(1,2). Transition from the first to the second larval stage fates requires the 22-nucleotide lin-4 RNA(1,3,4), and transition from late larval to adult cell fates requires the 21-nucleotide let-7 RNA 2. The lin-4 and let-7 RNA genes are not homologous to each other, but are each complementary to sequences in the 3' untranslated regions of a set of protein-coding target genes that are normally negatively regulated by the RNAs1,2,5,6. Here we have detected let-7 RNAs of similar to 21 nucleotides in samples from a wide range of animal species, including vertebrate, ascidian, hemichordate, mollusc, annelid and arthropod, but not in RNAs from several cnidarian and poriferan species, Saccharomyces cerevisiae, Escherichia coli or Arabidopsis. We did not detect lin-4 RNA in these species. We found that let-7 temporal regulation is also conserved: let-7 RNA expression is first detected at late larval stages in C. elegans and Drosophila, at 48 hours after fertilization in zebrafish, and in adult stages of annelids and molluscs. The let-7 regulatory RNA may control late temporal transitions during development across animal phylogeny.
Resumo:
The majority of common diseases such as cancer, allergy, diabetes, or heart disease are characterized by complex genetic traits, in which genetic and environmental components contribute to disease susceptibility. Our knowledge of the genetic factors underlying most of such diseases is limited. A major goal in the post-genomic era is to identify and characterize disease susceptibility genes and to use this knowledge for disease treatment and prevention. More than 500 genes are conserved across the invertebrate and vertebrate genomes. Because of gene conservation, various organisms including yeast, fruitfly, zebrafish, rat, and mouse have been used as genetic models.
Resumo:
Objective: To target antigen-loaded liposomes to myeloid APC in vivo for immunotherapy and to manipulate immune function through liposome composition. Method: Liposomes were loaded with ovalbumin, the lipophilic red fluorescent marker, DiI, with or without QuilA adjuvant then injected either i.v. or s.c. to naı¨ ve C57Bl/6 mice. Spleen, liver and draining LN were stained with MHC class II and various myeloid markers to determine the uptake of liposomes. Frozen sections of spleen and draining LN were stained with FITC-labeled mAb to determine which cells take up the liposomes. To determine the effect on OVA-specific T cell responses, liposomes were administered to Balb/c mice which received DO11.10 OVAspecific TCR transgenic T cells labelled with CFSE. Results: The DiI fluorescence was visualized in MHC class II+ macrophages and DC in draining lymph nodes after s.c. injection and in spleen and liver after i.v injection. Immunofluorescence microscopy shows liposome uptake in marginal zone macrophages and some DC in the T cell areas of the spleen after i.v. injection. Administration of ova-liposomes with or without QuilA stimulated a specific T cell response as measured by CFSE dilution. Conclusion: APC of liver, spleen and LN, and subsequent antigen presentation to T cells can be targeted for immunotherapy by the administration of liposomes encapsulating antigen and adjuvant. Varying the composition and routes of liposome administration is expected to alter the function of the targeted APC and the T cell response.
Resumo:
Epithelial malignancies are common in immunosuppressed individuals and the general population. However the mechanisms by which the adaptive immune system can eliminate immunogenic epithelial cells remain undefined. The aim of this project was to determine the effector molecules required for induction of apoptosis in murine epidermal keratinocytes (MEKs) in vitro and in vivo. HPV16E7-specific CTL lines and T cell receptor transgenic (E7TCRtg) effector cells were obtained from wild type (wt)-C57 and syngeneic mice rendered functionally inactive for perforin (Pfp), interferon-g (IFN-g) or FasL. CTLs or E7TCRtg spleen cells were co-cultured with primary MEKs in vitro or transferred into skin graft recipients. Inhibition of colony formation and skin graft rejection were used as indicators of T cell:KC interaction. Wt E7-specific CTLs and CTLs deficient in perforin, FasL or IFN-g produced mean reductions in colony formation of 67% (62.4–71.3%), 72% (71.1–72%), 76% (73–78%) and 21.5% (14– 34%) respectively. Wt, perforin deficient or FasL deficient CTLs all induced rejection of skin grafts (wt: 6/12; Pfp: 9/15; FasL: 3/13 survival). Transfer and immunisation of wt E7TCRtg spleen cells induces rejection of 50% of grafts (4/8 survival). In contrast, perforin or IFN-g deficient E7TCRtg failed to induce graft rejection (5/6; 4/4 survival). FasL deficient E7TCRtg induced nonspecific rejection of grafts (E7- 2/6 survival; C57- 4/7 survival). Therefore IFN-g production by CTL is necessary and sufficient in vitro and in vivo to kill epithelial cells which express a nonself antigen. Assessment of immunotherapies directed against epithelial tissues may be more effectively achieved by assaying the amount of IFN-g production by CD8 T cells, and the number and affinity of those cells, in conjunction with quantitation of perforin mediated effects in short term assays.
Resumo:
Comparative studies of the tetrapod raldh2 (aldh1a2) gene, which encodes a retinoic acid (RA) synthesis enzyme, have led to the identification of a dorsal spinal cord enhancer. Enhancer activity is directed dorsally to the roof plate and dorsal-most (dl1) interneurons through predicted Tcf- and Cdx-homeodomain binding sites and is repressed ventrally via predicted Tgif homeobox and ventral Lim-homeodomain binding sites. Raldh2 and Math1/Cath1 expression in mouse and chicken highlights a novel, transient, endogenous Raldh2 expression domain in dl1 interneurons, which give rise to ascending circuits and intraspinal commissural interneurons, suggesting roles for RA in the ontogeny of spinocerebellar and intraspinal proprioceptive circuits. Consistent with expression of raldh2 in the dorsal interneurons of tetrapods, we also found that raldh2 is expressed in dorsal interneurons throughout the agnathan spinal cord, suggesting ancestral roles for RA signaling in the ontogenesis of intraspinal proprioception.
Resumo:
The critical interaction initiating and perhaps perpetuating rheumatoid arthritis (RA) is the presentation of arthritogenic antigen to autoreactive T cells. In contrast to many organ-specific autoimmune diseases, no candidate autoantigens have yet been confirmed for RA. Here, Ranjeny Thomas and Peter Lipsky examine the role of dendritic cells in autoimmune disease, leading to the hypothesis that activation of T cells by endogenous self-peptides may be sufficient to initiate RA.