978 resultados para top-seed solution growth
Resumo:
High-angle grain boundary migration is predicted during geometric dynamic recrystallization (GDRX) by two types of mathematical models. Both models consider the driving pressure due to curvature and a sinusoidal driving pressure owing to subgrain walls connected to the grain boundary. One model is based on the finite difference solution of a kinetic equation, and the other, on a numerical technique in which the boundary is subdivided into linear segments. The models show that an initially flat boundary becomes serrated, with the peak and valley migrating into both adjacent grains, as observed during GDRX. When the sinusoidal driving pressure amplitude is smaller than 2 pi, the boundary stops migrating, reaching an equilibrium shape. Otherwise, when the amplitude is larger than 2 pi, equilibrium is never reached and the boundary migrates indefinitely, which would cause the protrusions of two serrated parallel boundaries to impinge on each other, creating smaller equiaxed grains.
Resumo:
This work studied the electrochemical behavior of a solution treated or 550 degrees C aged Cu10Ni-3Al-1.3Fe alloy, in 0.01 M NaCl aqueous solution, through potentiodynamic polarization in both stagnant condition or under erosion process. Results showed the occurrence of a passivity break potential (E(pb)), related to the beginning of the denickelification process, which occurred as a localized attack under stagnant electrolyte. Under erosion conditions localized denickelification was not observed, despite of the presence of E(pb). This could indicate that selective corrosion of Ni, which caused the observed E(pb), occurred as a dissolution-redeposition process, with removal of the Cu deposits during erosion process. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this work, we experimentally showed that the spontaneous segregation of MgO as surface excess in MgO doped SnO(2) nanoparticles plays an important role in the system`s energetics and stability. Using Xray fluorescence in specially treated samples, we quantitatively determined the fraction of MgO forming surface excess when doping SnO(2) with several different concentrations and established a relationship between this amount and the surface energy of the nanoparticles using the Gibbs approach. We concluded that the amount of Mg ions on the surface was directly related to the nanoparticles total free energy, in a sense that the dopant will always spontaneously distribute itself to minimize it if enough diffusion is provided. Because we were dealing with nanosized particles, the effect of MgO on the surface was particularly important and has a direct effect on the equilibrium particle size (nanoparticle stability), such that the lower the surface energy is, the smaller the particle sizes are, evidencing and quantifying the thermodynamic basis of using additives to control SnO(2) nanoparticles stability. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A Fe-22.5%Cr-4.53%Ni-3.0%Mo duplex stainless steel was solution treated at 1,325 A degrees C for 1 h, quenched in water and isothermally treated at 900 A degrees C for 5,000 s. The crystallography of austenite was studied using EBSD technique. Intragranular austenite particles formed from delta ferrite are shown to nucleate on inclusions, and to be subdivided in twin-related sub-particles. Intragranular austenite appears to have planar-only orientation relationships with the ferrite matrix, close to Kurdjumov-Sachs and Nishyiama-Wassermann, but not related to a conjugate direction. Samples treated at 900 A degrees C underwent sparse formation of sigma phase and pronounced growth of elongated austenite particles, very similar to acicular ferrite.
Resumo:
Heat treated electrical steel laminations have shown evidence of low ductility behavior, characterized by a small number of bends till fracture, on repeated bending tests. The laminations were produced using a new grade of electrical steel with much lower aluminum content than usual. The problem happens when the oxygen potential (measured by the dew point of the atmosphere) of the heat treatment atmosphere is abnormally high. Furthermore, ductility can be restored by a low-oxygen potential heat treatment. Although the heat treatment resulted in a loss of ductility, the magnetic properties were not deteriorated. The low ductility samples always show intergranular fracture, whereas the un-treated laminations fracture by cleavage. The low ductility is associated with the formation of silicon manganese nitride precipitates formed at grain boundaries, although they are not the cause of the low ductility. Ductility could be restored by a low dew point heat treatment but the inclusions remained in the grain boundaries. The low ductility and its recovery must be ascribed to the presence of nitrogen atoms segregated to the grain boundaries when the heat treatment atmosphere has a high oxygen potential. The lack of aluminum in the composition of the steel hinders the scavenging effect of this element on nitrogen atoms in solution in the steel. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Directional solidification of molten metallurgical-grade Si was carried out in a vertical Bridgman furnace. The effects of changing the mold velocity from 5 to 110 mu m seconds(-1) on the macrosegregation of impurities during solidification were investigated. The macrostructures of the cylindrical Si ingots obtained in the experiments consist mostly of columnar grains parallel to the ingot axis. Because neither cells nor dendrites can be observed on ingot samples, the absence of precipitated particles and the fulfillment of the constitutional supercooling criterion suggest a planar solid-liquid interface for mold velocities a parts per thousand currency sign10 mu m seconds(-1). Concentration profiles of several impurities were measured along the ingots, showing that their bottom and middle are purer than the metallurgical Si from which they solidified. At the ingot top, however, impurities accumulated, indicating the typical normal macrosegregation. When the mold velocity decreases, the macrosegregation and ingot purity increase, changing abruptly for a velocity variation from 20 to 10 mu m seconds(-1). A mathematical model of solute transport during solidification shows that, for mold velocities a parts per thousand yen20 mu m seconds(-1), macrosegregation is caused mainly by diffusion in a stagnant liquid layer assumed at the solid-liquid interface, whereas for lower velocities, macrosegregation increases as a result of more intense convective solute transport.
Resumo:
This article reports experimental results obtained in a laboratory-scale photochemical reactor on the photodegradation of poly(ethylene glycol) (PEG) in aqueous solutions by means of the photo-Fenton and H(2)O(2)/UV processes. Dilute water solutions of PEG were fed to a batch reactor, mixed with pertinent reactants, and allowed to react under different conditions. Reaction progress was evaluated by sampling and analyzing the concentration of the total organic carbon (TOC) in solution as a function of the reaction time. Organic acids formed during oxidation were determined by HPLC analyses. The main acids detected in both processes were acetic and formic. Glycolic acid was detected only in the photo-Fenton process, and malonic acid was detected only in the H(2)O(2)/UV treatment, indicating that different reaction paths occur in these processes. The characteristics of both processes are discussed, based on the evolution of the TOC-time curves and the concentration profiles of the monitored organic acids. The experimental results constitute a contribution to the design of industrial processes for the treatment of wastewaters containing soluble polymers with similar properties.
Resumo:
In petroleum refineries, water is used in desalting units to remove the salt contained in crude oil. Typically, 7% of the volume of hot crude oil is water, forming a water-and-oil emulsion. The emulsion flows between two electrodes and is subjected to an electric field. The electrical forces promote the coalescence of small droplets of water dispersed in crude oil, and these form bigger droplets. This paper calculates the forces acting on the droplets, highlighting particularly the mechanisms proposed for droplet-droplet coalescence under the influence of an applied electric field. Moreover, a model is developed in order to calculate the displacement speed of the droplets and the time between droplet collisions. Thus, it is possible to simulate and optimize the process by changing the operational variables (temperature, electrical field, and water quantity). The main advantage of this study is to show that it is feasible to increase the volume of water recycled in desalting processes, thus reducing the use of freshwater and the generation of liquid effluents in refineries.
Resumo:
In this work, high-aligned single-walled carbon nanotube (SWCNT) forest have been grown using a high-density plasma chemical vapor deposition technique (at room temperature) and patterned into micro-structures by photolithographic techniques, that are commonly used for silicon integrated circuit fabrication. The SWCNTs were obtained using pure methane plasma and iron as precursor material (seed). For the growth carbon SWCNT forest the process pressure was 15 mTorr, the RF power was 250W and the total time of the deposition process was 3 h. The micropatterning processes of the SWCNT forest included conventional photolithography and magnetron sputtering for growing an iron layer (precursor material). In this situation, the iron layer is patterned and high-aligned SWCNTs are grown in the where iron is present, and DLC is formed in the regions where the iron precursor is not present. The results can be proven by Scanning Electronic Microscopy and Raman Spectroscopy. Thus, it is possible to fabricate SWCNT forest-based electronic and optoelectronic devices. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the design of a low cost accessible digital television set-top box. This set-top box was designed and tested to the International ISDB-T system and considered the adoption of solutions that would provide accessible services in digital television in the simplest digital television receiver. The accessible set-top box was evaluated regarding the processing and memory requirements impacts to provide the features for accessible services. The work presents also the access services bandwidth consumption analysis(1).
Resumo:
In this paper the continuous Verhulst dynamic model is used to synthesize a new distributed power control algorithm (DPCA) for use in direct sequence code division multiple access (DS-CDMA) systems. The Verhulst model was initially designed to describe the population growth of biological species under food and physical space restrictions. The discretization of the corresponding differential equation is accomplished via the Euler numeric integration (ENI) method. Analytical convergence conditions for the proposed DPCA are also established. Several properties of the proposed recursive algorithm, such as Euclidean distance from optimum vector after convergence, convergence speed, normalized mean squared error (NSE), average power consumption per user, performance under dynamics channels, and implementation complexity aspects, are analyzed through simulations. The simulation results are compared with two other DPCAs: the classic algorithm derived by Foschini and Miljanic and the sigmoidal of Uykan and Koivo. Under estimated errors conditions, the proposed DPCA exhibits smaller discrepancy from the optimum power vector solution and better convergence (under fixed and adaptive convergence factor) than the classic and sigmoidal DPCAs. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
The competition among the companies depends on the velocity and efficience they can create and commercialize knowledge in a timely and cost-efficient manner. In this context, collaboration emerges as a reaction to the environmental changes. Although strategic alliances and networks have been exploited in the strategic literature for decades, the complexity and continuous usage of these cooperation structures, in a world of growing competition, justify the continuous interest in both themes. This article presents a scanning of the contemporary academic production in strategic alliances and networks, covering the period from January 1997 to august 2007, based on the top five journals accordingly to the journal of Citation Report 2006 in the business and management categories simultaneously. The results point to a retraction in publications about strategic alliances and a significant growth in the area of strategic. networks. The joint view of strategic alliances and networks, cited by some authors a the evolutionary path of study, still did not appear salient. The most cited topics found in the alliance literature are the governance structure, cooperation, knowledge transfer, culture, control, trust, alliance formation,,previous experience, resources, competition and partner selection. The theme network focuses mainly on structure, knowledge transfer and social network, while the joint vision is highly concentrated in: the subjects of alliance formation and the governance choice.
Resumo:
This in vitro study evaluated the antimicrobial activity of extracts obtained from Rheedia brasiliensis fruit (bacupari) and its bioactive compound against Streptococcus mutans. Hexane, ethyl-acetate and ethanolic extracts obtained (concentrations ranging from 6.25 to 800 mu g/ml) were tested against S. mutans UA159 through MIC/MBC assays. S. mutans 5-days-old biofilms were treated with the active extracts (100 x MIC) for 0, 1, 2, 3 and 4 h (time-kill) and plated for colony counting (CFU/ml). Active extracts were submitted to exploratory chemical analyses so as to isolate and identify the bioactive compound using spectroscopic methods. The bioactive compound (concentrations ranging from 0.625 to 80 mu g/ml) was then tested through MIC/MBC assays. Peel and seed hexane extracts showed antimicrobial activity against planktonic cells at low concentrations and were thus selected for the time kill test. These hexane extracts reduced S. mutans biofilm viability after 4 h, certifying of the bioactive compound presence. The bioactive compound identified was the polyprenylated benzophenone 7-epiclusianone, which showed a good antimicrobial activity at low concentrations (MIC: 1.25-2.5 mu g/ml; MBC: 10-20 mu g/ml). The results indicated that 7-epiclusianone may be used as a new agent to control S. mutans biofilms; however, more studies are needed to further elucidate the mechanisms of action and the anticariogenic potential of such compound found in R. brasiliensis. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
Interpretation of the anatomical structure of the ovary and fruit of the Orchidaceae family is still controversial, which makes it difficult to understand the development and dehiscence of the fruit. The genus Oncidium is polyphyletic and is currently the subject of taxonomic studies. In this study, we have investigated the anatomical development of the pericarp and seed of Oncidium flexuosum Sims to determine important diagnostic characters that, along with molecular data, can assist in defining this group. We have found a new anatomical characteristic of the family: the presence of precursor cells for fruit dehiscence, which were visible from the beginning of development and located on the outer walls of the sterile valves. In contrast with what has been observed by different authors with other species, in the mature fruit of O. flexuosum, only the endocarp of the fertile valves and a few cells near the exocarp and the vascular bundle in the sterile valves show parietal thickening, while the rest remains parenchymatous. During the development of the ovule and embryo, we have shown that the embryonic sac of this species has eight nuclei and that the embryo has a long and elaborate suspensor. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
Based on physical laws of similarity, an analytic solution of the soil water potential form of the Richards equation was derived for water infiltration into a homogeneous sand. The derivation assumes a similarity between the soil water retention function and that of the soil water content profiles taken at fixed times. The new solution successfully described soil water content profiles experimentally measured for water infiltrating downward, upward, and horizontally into a homogeneous sand and agrees with that presented by Philip in 1957. The utility of this analysis is still to be verified, but it is expected to hold for soils that have a narrow pore-size distribution before wetting and that manifest a sharp increase of water content at the wetting front during infiltration. The effect of van Genuchten`s parameters alpha and n on the application of the solution to other porous media was investigated. The solution also improves and provides a more realistic description of the infiltration process than that pioneered by Green and Ampt in 1911.