963 resultados para synthesized nanomaterials
Resumo:
We have developed a model for designing antimalarial drugs based on interference with an essential metabolism developed by Plasmodium during its intraerythrocytic cycle, phospholipid (PL) metabolism. The most promising drug interference is choline transporter blockage, which provides Plasmodium with a supply of precursor for synthesis of phosphatidylcholine (PC), the major PL of infected erythrocytes. Choline entry is a limiting step in this metabolic pathway and occurs by a facilitated-diffusion system involving an asymmetric carrier operating according to a cyclic model. Choline transport in the erythrocytes is not sodium dependent nor stereospecific as demonstrated using stereoisomers of alpha and beta methylcholine. These last two characteristics along with distinct effects of nitrogen substitution on transport rate demonstrate that choline transport in the infected erythrocyte possesses characteristics quite distinct from that of the nervous system. This indicates a possible discrimination between the antimalarial activity (inhibition of choline transport in the infected erythrocyte) and a possible toxic effect through inhibition of choline entry in synaptosomes. Apart from the de novo pathway of choline, PC can be synthesized by N-methylation from phosphatidylethanolamine (PE). There is a de novo pathway for PE biosynthesis from ethanolamine in infected cells but phosphatidylserine (PS) decarboxylation also occurs. In addition, PE can be directly and abundantly synthesized from serine decarboxylation into ethanolamine, a pathway which is absent from the host. The variety of the pathways that exist for the biosynthesis of one given PL led us to investigate whether an equilibrium can occur between all PL metabolic pathways. Indeed, if alternative (compensative) pathway(s) can operate after blockage of the de novo PC biosynthesis pathway this would indicate a potential mechanism for resistance acquisition. Up until now, there is no evidence of such a compensative process occurring in Plasmodium-infected erythrocytes under physiological conditions. Besides, the discovery of a highly parasite-specific pathway (serine decarboxylation and the presence of PS synthase) constitutes a very attractive and promising target, which could be attacked if resistances are built up against choline analogs. Indeed, potential inhibitions of the serine decarboxylase pathway could be very useful in acting instead of, or in surgery with, choline analogs.
Resumo:
Familial hemiplegic migraine type 2, an autosomal dominant form of migraine with aura, has been associated with four distinct mutations in the alpha2-subunit of the Na+,K+-ATPase. We have introduced these mutations in the alpha2-subunit of the human Na+,K+-ATPase and the corresponding mutations in the Bufo marinus alpha1-subunit and studied these mutants by expression in Xenopus oocyte. Metabolic labeling studies showed that the mutants were synthesized and associated with the beta-subunit, except for the alpha2HW887R mutant, which was poorly synthesized, and the alpha1BW890R, which was partially retained in the endoplasmic reticulum. [3H]ouabain binding showed the presence of the alpha2HR689Q and alpha2HM731T at the membrane, whereas the alpha2HL764P and alpha2HW887R could not be detected. Functional studies with the mutants of the B. marinus Na+,K+-ATPase showed a reduced or abolished electrogenic activity and a low K+ affinity for the alpha1BW890R mutant. Through different mechanisms, all these mutations result in a strong decrease of the functional expression of the Na+,K+-pump. The decreased activity in alpha2 isoform of the Na+,K+-pump expressed in astrocytes seems an essential component of hemiplegic migraine pathogenesis and may be responsible for the cortical spreading depression, which is one of the first events in migraine attacks.
Resumo:
El principal problema de les teràpies actuals contra el càncer es la baixa especificitat envers les cèl•lules tumorals, cosa que comporta gran quantitat d’efectes secundaris. Per això es important el desenvolupament de nous tipus de teràpies i sistemes d’alliberament efectius per als fàrmacs ja existents al mercat. En la immunoteràpia contra el càncer es pretén estimular el sistema immunològic per a eliminar les cèl•lules canceroses de manera selectiva. En aquest projecte s’han sintetitzat derivats de l’antigen peptídic de melanoma NY-ESO1 i s’ha estudiat la seva capacitat per a estimular el sistema immunològic com a vacunes contra el càncer. També s’han encapsulat el antígens peptídics en liposomes com a adjuvants i sistemes d’alliberament. De totes les variants peptídiques la que resultà més immunogènica fou la que contenia el grup palmitoil i el fragment toxoide tetànic en la seva estructura. La utilització de liposomes com a sistema adjuvant sembla una estratègia interessant per al disseny de vacunes contra el càncer donat que l’encapsulació del pèptid en liposomes va augmentar notablement la resposta immunològica de l’antigen. Per altra banda, s’han desenvolupat dendrímers basats en polietilenglicol com a sistemes alliberadors de fàrmacs per al tractament de tumors. El polietilenglicol és àmpliament utilitzat com a sistema d’alliberament de fàrmacs degut a les seves interessants propietats, augment de la solubilitat i dels temps de residència en plasma, entre d’altres. La metodologia química descrita permet la diferenciació controlada de varies posicions en la superfície del dendrímer a més del creixement del dendrímer fins a una segona generació. S’ha sintetitzat la primera generació del dendrímer contenint el fàrmac antitumoral 5-fluorouracil i s’han realitzat estudis de citotoxicitat comprovant que l’activitat del nanoconjugat és del mateix ordre de magnitud que el 5-fluorouracil sense conjugar.
Resumo:
Discs of polyvinyl alcohol cross-linked with glutaraldehyde were synthesized under acid catalysis (H2SO4). Then, the antigen F1 purified from Yersinia pestis was covalently linked to this modified polymer. Afterwards, an enzyme-linked immunosorbent assay (ELISA) was established for the diagnosis of plague in rabbit and human. The best conditions for the method were achieved by using 1.3 ¼g of F1 prepared in 0.067 M phosphate buffer, pH 7.2, containing 1 M NaCl (PBS); anti-IgG peroxidase conjugate diluted 6,000 times and as a blocking agent 3% w/v skim milk in PBS. The titration of positive rabbit serum according to this procedure detected antibody concentrations up to 1:12,800 times. The present method, the conventional ELISA and passive haemagglutination assay are compared.
Resumo:
Human RNA polymerase (Pol) III-transcribed genes are thought to share a simple termination signal constituted by four or more consecutive thymidine residues in the coding DNA strand, just downstream of the RNA 3'-end sequence. We found that a large set of human tRNA genes (tDNAs) do not display any T(≥4) stretch within 50 bp of 3'-flanking region. In vitro analysis of tDNAs with a distanced T(≥4) revealed the existence of non-canonical terminators resembling degenerate T(≥5) elements, which ensure significant termination but at the same time allow for the production of Pol III read-through pre-tRNAs with unusually long 3' trailers. A panel of such non-canonical signals was found to direct transcription termination of unusual Pol III-synthesized viral pre-miRNA transcripts in gammaherpesvirus 68-infected cells. Genome-wide location analysis revealed that human Pol III tends to trespass into the 3'-flanking regions of tDNAs, as expected from extensive terminator read-through. The widespread occurrence of partial termination suggests that the Pol III primary transcriptome in mammals is unexpectedly enriched in 3'-trailer sequences with the potential to contribute novel functional ncRNAs.
Synthesis and characterization of a new class of anti-angiogenic agents based on ruthenium clusters.
Resumo:
New triruthenium-carbonyl clusters derivatized with glucose-modified bicyclophosphite ligands have been synthesized. These compounds were found to have cytostatic and cytotoxic activity and depending on the number of bicyclophosphite ligands, and could be tuned for either anti-cancer or specific anti-angiogenic activity. While some compounds had a broad cellular toxicity profile in several cell types others showed endothelial cell specific dose-dependent anti-proliferative and anti-migratory efficacy. A profound inhibition of angiogenesis was also observed in the in vivo chicken chorioallantoic membrane (CAM) model, and consequently, these new compounds have considerable potential in drug design, e.g. for the treatment of cancer.
Resumo:
En aquest projecte s'analitzen les limitacions de la implementació de ressonadors sèrie en derivació en tecnologia microstrip mitjançant un stub en derivació de salt d'impedància (SISS). L'esmentada estructura està composada per una línea d'alta impedància carregada amb una línea de baixa impedància acabada en circuit obert. El seu comportament en freqüència és equivalent al d'un ressonador sèrie en derivació sempre i quan les longituds de les seves línies siguin elèctricament petites. Sota aquestes condicions, bàsicament, la línia d'alta impedància sintetitza una inductància, mentre que la línia de baixa impedància una capacitat. La limitació en els valors mínim i màxim de la impedància característica que es poden implementar implica una limitació sobre la inductància i la capacitat que es poden sintetitzar mitjançant el SISS.
Resumo:
Eosinophils are prominent inflammatory cells in asthma and other allergic disorders, as well as in helminthic parasite infections. Recently, eosinophils have been reported to synthesize and store a range of regulatory proteins within their secretory granules (eokines). Eokines comprise a group of cytokines, chemokines, and growth factors which are elaborated by eosinophils. These proteins, and the messages which encode them, appear to be identical to those produced by lymphocytes and other tissues. Interestingly, immunoreactivity to many of these eokines has been found to co-localize to the eosinophil´s secretory granules. In this review, we have discussed the repertoire of 18 eokines so far identified in eosinophils, and focused on four of these, namely, interleukin-2 (IL-2), IL-4, granulocyte/macrophage colony-stimulating factor (GM-CSF), and RANTES. These four eokines co-localize to the crystalloid granules in eosinophils, as shown in studies using subcellular fractionation and immunogold labeling in electron microscopy. During stimulation by physiological triggers, for example, with serum-coated particles, eosinophils release these mediators into the surrounding supernatant. In addition, eokines are likely to be synthesized within eosinophils rather than taken up by endocytosis, as show in detection of mRNA for each of these proteins using in situ hybridization, RT-PCR, and in the case of RANTES, in situ RT-PCR. Eokines synthesis and release from eosinophils challenges the commonly held notion that these cells act downstream of key elements in immune system, and indicate that they may instead belong to the afferent arm of immunity.
Resumo:
RÉSUMÉ : Chez l'homme, le manque de sélectivité des agents thérapeutiques représente souvent une limitation pour le traitement des maladies. Le ciblage de ces agents pour un tissu défini pourrait augmenter leur sélectivité et ainsi diminuer les effets secondaires en comparaison d'agents qui s'accumuleraient dans tout le corps. Cela pourrait aussi améliorer l'efficacité des traitements en permettant d'avoir une concentration localisée plus importante. Le ciblage d'agents thérapeutiques est un champ de recherche très actif. Les stratégies sont généralement basées sur les différences entre cellules normales et malades. Ces différences peuvent porter soit sur l'expression des molécules à leurs surfaces comme des récepteurs ou des transporteurs, soit sur les activités enzymatiques exprimées. Le traitement thérapeutique choisi ici est la thérapie photodynamique et est déjà utilisé pour le traitement de certains cancers. Cette thérapie repose sur l'utilisation de molécules qui réagissent à la lumière, les photosensibilisants. Elles absorbent l'énergie lumineuse et réagissent avec l'oxygène pour former des radicaux toxiques pour les cellules. Les photosensibilisants utilisés ici sont de deux natures : (i) soit ils sont tétrapyroliques (comme les porphyrines et chlorines), c'est à dire qu'ils sont directement activables par la lumière ; (ii) soit ce sont des prodrogues de photosensibilisants comme l'acide 5aminolévulinique (ALA) qui est transformé dans la cellule en protoporphyrine IX photosensibilisante. Dans le but d'augmenter la sélectivité des photosensibilisants, nous avons utilisé deux stratégies différentes : (i) le photosensibilisant est modifié par le greffage d'un agent de ciblage ; (ii) le photosensibilisant est incorporé dans des structures moléculaires de quelques centaines de nanomètres. Les sucres et l'acide folique sont des agents de ciblage largement établis et ont été utilisés ici car leurs récepteurs sont surexprimés à la surface de nombreuses cellules malades. Ainsi, des dérivés sucres ou acide folique de l'ALA ont été synthétisés et évalués in vitro sur de nombreuses lignées cellulaires cancéreuses. La stratégie utilisant l'acide folique est apparue incompatible avec l'utilisation de l'ALA puisque aucune photosensibilité n'a été induite par le composé. La stratégie utilisant les sucres a, par ailleurs, provoquée de bonnes photosensibilités mais pas d'augmentation de sélectivité. En parallèle, la combinaison entre les propriétés anticancéreuses des complexes métalliques au ruthénium avec les propriétés photosensibilisantes des porphyrines, a été évaluée. En effet, les thérapies combinées ont émergé il y a une dizaine d'années et représentent aujourd'hui de bonnes alternatives aux monothérapies classiques. Des ruthenium(I1)-arènes complexés avec la tetrapyridylporphyrine ont ainsi présenté de bonnes cytotoxicités et de bonnes phototoxicités pour des cellules de mélanomes. Des porphyrines ont aussi été compléxées avec des noyaux de diruthénium et ce type de dérivé a présenté de bonnes phototoxicités et une bonne sélectivité pour les cellules cancéreuses de l'appareil reproducteur féminin. L'incorporation de photosensibilisants tétrapyroliques a finalement été effectuée en utilisant des nanoparticules (NP) biocompatibles composées de chitosan et de hyaluronate. L'effet de ces NP a été évalué pour le traitement de la polyarthrite rhumatoïde (PR). Les NP ont d'abord été testées in vitro avec des macrophages de souris et les résultats ont mis en évidence de bonnes sélectivités et photosensibilités pour ces cellules. In vivo chez un modèle marin de la PR, l'utilisation de ces NP a révélé un plus grand temps de résidence des NP dans le genou de la souris en comparaison du temps obtenu avec le photosensibilisant seul. Le traitement par PDT a aussi démontré une bonne efficacité par ailleurs égale à celle obtenue avec les corticoïdes utilisés en clinique. Pour finir, les NP ont aussi démontré une bonne efficacité sur les myelomonocytes phagocytaires humains et sur les cellules contenues dans le liquide synovial de patients présentant une PR. Tous ces résultats suggèrent que les deux stratégies de ciblage peuvent être efficaces pour les agents thérapeutiques. Afm d'obtenir de bons résultats, il est toutefois nécessaire de réaliser une analyse minutieuse de la cible et du mode d'action de l'agent thérapeutique. Concernant les perspectives, la combinaison des deux stratégies c'est à dire incorporer des agents thérapeutiques dans des nanostructures porteuses d'agents de ciblage, représente probablement une solution très prometteuse. SUMMARY : In humans, the lack of selectivity of drugs and their high effective concentrations often represent limitations for the treatment of diseases. Targeting the therapeutical agents to a defined tissue could enhance their selectivity and then diminish their side effects when compared to drugs that accumulate in the entire body and could also improve treatment efûciency by allowing a localized high concentration of the agents. Targeting therapeutics to defined cells in human pathologies is a main challenge and a very active field of research. Strategies are generally based on the different behaviors and patterns of expression of diseased cells compared to normal cells such as receptors, proteases or trans-membrane carriers. The therapeutic treatment chosen here is the photodynamic therapy and is already used in the treatment of many cancers. This therapy relies on the administration of a photosensitizer (PS) which will under light, react with oxygen and induce formation of reactive oxygen species which are toxic for cells. The PSs used here are either tetrapyrolic (i. e. porphyries and chlorins) or prodrugs of PS (5-aminolevulinic acid precursor of the endogenous protoporphyrin Imo. In order to improve PS internalization and selectivity, we have used two different strategies: the modification of the PSs with diseased cell-targeting agents as well as their encapsulation into nanostructures. Sugars and folic acid are well established as targeting entities for diseased cells and were used here since their transporters are overexpressed on the surface of many cancer cells. Therefore sugar- and folic acid-derivatives of 5-aminolevulinic acid (ALA) were synthesized and evaluated in vitro in several cancer cell lines. The folic acid strategy appeared to be incompatible with ALA since no photosensitivity was induced while the strategy with sugars induced good photosensitivites but no increase of selectivity. Alternatively, the feasibility of combining the antineoplastic properties of ruthenium complexes with the porphyrin's photosensitizing properties, was evaluated since combined therapies have emerged as good alternatives to classical treatments. Tetrapyridylporphyrins complexed to ruthenium (I17 arenes presented good cytotoxicities and good phototoxicities toward melanoma cells. Porphyries were also complexed to diruthenium cores and this type of compound presented good phototoxicities and good selectivity for female reproductive cancer cells. The encapsulation of tetrapyrolic PSs was finally investigated using biocompatible nanogels composed of chitosan and hyaluronate. The behavior of these nanoparticles was evaluated for the treatment of rheumatoid arthritis (RA). They were first tested in vitro in mouse macrophages and results revealed good selectivities and phototoxicities toward these cells. In vivo in mice model of RA, the use of such nanoparticles instead of free PS showed longer time of residence in mice knees. Photodynamic protocols also demonstrated good efficiency of the treatment comparable to the corticoid injection used in the clinic. Finally our system was also efficient in human cells using phagocytic myelomonocytes or using cells of synovial fluids taken from patients with RA. Altogether, these results revealed that both strategies of modification or encapsulation of drugs can be successful in the targeting of diseased cells. However, a careful analysis of the target and of the mode of action of the drug, are needed in order to obtain good results. Looking ahead to the future, the combination of the two strategies (i.e. drugs loaded into nanostructures bearing the targeting agents) would represent probably the best solution.
Resumo:
The kinetoplastid membrane protein 11 (KMP-11) has been recently described in Leishmania (Leishmania) donovani as a major component of the promastigote membrane. Two oligonucleotide primers were synthesized to PCR-amplify the entire coding region of New World Leishmania species. The Leishmania (Viannia) panamensis amplification product was cloned, sequenced and the putative amino acid sequence determined. A remarkably high degree of sequence homology was observed with the corresponding molecule of L. (L) donovani and L. (L) infantum (97% and 96%, respectively). Southern blot analysis showed that the KMP-11 locus is conformed by three copies of the gene. The L. (V) panamensis ORF was subsequently cloned in a high expression vector and the recombinant protein was induced and purified from Escherichia coli cultures. Immunoblot analysis showed that 80%, 77% and 100% sera from cutaneous, mucocutaneous and visceral leishmaniasis patients, respectively, recognized the recombinant KMP-11 protein. In a similar assay, 86% of asymptomatic Leishmania-infected individuals showed IgG antibodies against the rKMP-11. We propose that KMP-11 could be used as a serologic marker for infection and disease caused by Leishmania in America.
Resumo:
Defensins and cathelicidins are anti-microbial peptides (AMPs) that act as natural antibiotics and are part of the innate immune defence in many species. We consider human defensins and LL37, the only human member of the cathelicidin family. In particular, we refer to the human alpha-defensins called human neutrophil peptides (HNP1 through 4), which are produced by neutrophils, HD5 and HD6, mainly expressed in Paneth cells of intestine, the human beta-defensins HBD1, HBD2 and HBD3, synthesized by epithelial cells and LL37, which is located in granulocytes, but is also produced by epithelial cells of the skin, lungs, and gut. In the last years, the study of AMPs activity and regulation has allowed to understand the important role of these peptides not only in the innate defence mechanisms against bacteria, viruses, fungi, but also in the regulation of immune cell activation and migration. Complementary studies have disclosed a role for AMPs in modulating many physiological processes that involve non-immune cells, such as activation of wound healing, angiogenesis, cartilage remodeling. Due to the pleiotropic tasks of these peptides, many of them are now being discovered to contribute to immune pathology of chronic diseases that affect skin, gut, joints; this is supported by many examples of immune-mediated pathologies in which their expression is disregulated. In this article we review the current literature that suggests a role for human defensins and LL37 in pathogenic mechanisms of several chronic diseases that are considered of auto-immune or auto-inflammatory origin.
Resumo:
A 5-year-old previously healthy boy was admitted for abdominal pain and vomiting. Physical examination showed tachypnoe (32/min), hepatomegaly and painful palpation of the upper right abdominal quadrant. Laboratory tests were normal except for elevated ammonium (202mcmol/l). Chest X-ray was performed, showing cardiomegaly and interstitial edema. Transthoracic echocardiography revealed dilated left cavities and LV hypertrophy together with a diffuse hypokinesia and LVEF of 30-40%. Diuretics and ACE-inhibitors were introduced. At that time, the differential diagnosis for the DCM included myocarditis, congenital or genetic, metabolic or autoimmune disease. The next day, the boy underwent cardiac magnetic resonance (CMR) examination, showing a severe dilatation of the LV with an end-diastolic diameter of 50mm and a volume of 150ml. LVEF was 20% with diffuse LV hypokinesia (Fig. 1). No late enhancement was present after Gadolinium injection, ruling out myocarditis. Further laboratory metabolic analysis indicated severely decreased total and free carnitin levels and low renal carnitin reabsorption, corroborating the diagnosis of primary carnitin deficiency (PCD). Carnitin substitution was initiated. The clinical condition rapidly improved. No symptoms of heart failure were present anymore. A follow-up CMR performed 9 months later confirmed the recovery. LV end-diastolic volume decreased from 150ml to 66ml, LVEF increased from 20% to 55% (Fig. 2). Late enhancement was absent after Gadolinum injection (Fig. 3).Carnitin is required for the transport of fatty acids from the cytosol into mitochondria during lipid breakdown. 75% of carnitin is obtained from food, 25% is endogenously synthesized. PCD is an autosomal recessive disorder resulting from impairment of a transporter activity, caused by mutation of the SLC22A5 gene. Incidence is about 1 in 40'000 newborns. Diagnosis is usually made at age 1 to 7. Three forms of PCD are described. In the form associated with cardiomyopathy, the disease is progressive and patient die from heart failure if not treated. Substitution of L-Carnitin leads to a dramatic improvement of disease course.This case underlines the crucial role of etiologic diagnostics in this reversible form of DCM. Early diagnostics and therapy are critical for the prognosis of the patient. This is furthermore an example of a role played by CMR in the diagnostic work-up of heart failure and its follow-up under therapy.
Resumo:
Control of schistosomiasis in Venezuela has been a topic of major interest and controversy among the metaxenic parasitosis. A small area of transmission of approximately 15,000 km2 was thought to be eradicated some years ago. However, some epidemiological characteristics of our transmission area have limited the success on the way toward eradication. Since 1945, when the Schistosomiasis Control Program started, the prevalence in the endemic area has decreased from 14% in 1943 to 1.4% in 1996. Until 1982, the surveillance of active cases was based on massive stool examination. Since then, the Schistosomiasis Research Group (SRG) recommended the additional use of serologic tests in the Control Program and the selective or massive chemotherapy depending on serological and parasitological prevalence of each community. At present, the real prevalence is underestimated due to the fact that approximately 80% of the individuals eliminate less than 100 eggs/g of feces. Those persons could be responsible for the maintenance of the foci going on and therefore limiting the impact of the control measures. Efforts of the SRG are being oriented toward improvement of immunodiagnostic tests by using defined antigens (enzymes) and chemically synthesized peptides, derived from relevant molecules of the parasite, either for antibodies or antigens search. On the other hand, introduction of snail competitors has been a biological weapon in the control of the intermediate host in certain areas. However, the recent reinfestation of water courses by Biomphalaria glabrata, the increased prevalence in some areas, together with important administrative changes at the Control Program of the Minister of Health, have arisen new questions and doubts, challenging the eradication strategy proposed during the last decade.
Resumo:
The hydrogen isotope ratio (HIR) of body water and, therefore, of all endogenously synthesized compounds in humans, is mainly affected by the HIR of ingested drinking water. As a consequence, the entire organism and all of its synthesized substrates will reflect alterations in the isotope ratio of drinking water, which depends on the duration of exposure. To investigate the effect of this change on endogenous urinary steroids relevant to doping-control analysis the hydrogen isotope composition of potable water was suddenly enriched from -50 to 200 0/00 and maintained at this level for two weeks for two individuals. The steroids under investigation were 5β-pregnane-3α,20α-diol, 5α-androst-16-en-3α-ol, 3α-hydroxy-5α-androstan-17-one (ANDRO), 3α-hydroxy-5β-androstan-17-one (ETIO), 5α-androstane-3α,17β-diol, and 5β-androstane-3α,17β-diol (excreted as glucuronides) and ETIO, ANDRO and 3β-hydroxyandrost-5-en-17-one (excreted as sulfates). The HIR of body water was estimated by determination of the HIR of total native urine, to trace the induced changes. The hydrogen in steroids is partly derived from the total amount of body water and cholesterol-enrichment could be calculated by use of these data. Although the sum of changes in the isotopic composition of body water was 150 0/00, shifts of approximately 30 0/00 were observed for urinary steroids. Parallel enrichment in their HIR was observed for most of the steroids, and none of the differences between the HIR of individual steroids was elevated beyond recently established thresholds. This finding is important to sports drug testing because it supports the intended use of this novel and complementary methodology even in cases where athletes have drunk water of different HIR, a plausible and, presumably, inevitable scenario while traveling.
Resumo:
Fatty acid and sterol analysis were performed on Phytomonas serpens and Phytomonas sp. grown in chemically defined and complex medium, and P. françai cultivated in complex medium. The three species of the genus Phytomonas had qualitatively identical fatty acid patterns. Oleic, linoleic, and linolenic were the major unsaturated fatty acids. Miristic and stearic were the major saturated fatty acids. Ergosterol was the only sterol isolated from Phytmonas sp. and P. serpens grown in a sterol-free medium, indicating that it was synthesized de novo. When P. françai that does not grow in defined medium was cultivated in a complex medium, cholesterol was the only sterol detected. The fatty acids and sterol isolated from Phytomonas sp. and P. serpens grown in a chemically defined lipid-free medium indicated that they were able to biosynthesize fatty acids and ergosterol from acetate or from acetate precursors such as glucose or threonine.