906 resultados para statistical techniques


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of how to construct robust designs for Poisson regression models. An analytical expression is derived for robust designs for first-order Poisson regression models where uncertainty exists in the prior parameter estimates. Given certain constraints in the methodology, it may be necessary to extend the robust designs for implementation in practical experiments. With these extensions, our methodology constructs designs which perform similarly, in terms of estimation, to current techniques, and offers the solution in a more timely manner. We further apply this analytic result to cases where uncertainty exists in the linear predictor. The application of this methodology to practical design problems such as screening experiments is explored. Given the minimal prior knowledge that is usually available when conducting such experiments, it is recommended to derive designs robust across a variety of systems. However, incorporating such uncertainty into the design process can be a computationally intense exercise. Hence, our analytic approach is explored as an alternative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inverse problems based on using experimental data to estimate unknown parameters of a system often arise in biological and chaotic systems. In this paper, we consider parameter estimation in systems biology involving linear and non-linear complex dynamical models, including the Michaelis–Menten enzyme kinetic system, a dynamical model of competence induction in Bacillus subtilis bacteria and a model of feedback bypass in B. subtilis bacteria. We propose some novel techniques for inverse problems. Firstly, we establish an approximation of a non-linear differential algebraic equation that corresponds to the given biological systems. Secondly, we use the Picard contraction mapping, collage methods and numerical integration techniques to convert the parameter estimation into a minimization problem of the parameters. We propose two optimization techniques: a grid approximation method and a modified hybrid Nelder–Mead simplex search and particle swarm optimization (MH-NMSS-PSO) for non-linear parameter estimation. The two techniques are used for parameter estimation in a model of competence induction in B. subtilis bacteria with noisy data. The MH-NMSS-PSO scheme is applied to a dynamical model of competence induction in B. subtilis bacteria based on experimental data and the model for feedback bypass. Numerical results demonstrate the effectiveness of our approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is important to promote a sustainable development approach to ensure that economic, environmental and social developments are maintained in balance. Sustainable development and its implications are not just a global concern, it also affects Australia. In particular, rural Australian communities are facing various economic, environmental and social challenges. Thus, the need for sustainable development in rural regions is becoming increasingly important. To promote sustainable development, proper frameworks along with the associated tools optimised for the specific regions, need to be developed. This will ensure that the decisions made for sustainable development are evidence based, instead of subjective opinions. To address these issues, Queensland University of Technology (QUT), through an Australian Research Council (ARC) linkage grant, has initiated research into the development of a Rural Statistical Sustainability Framework (RSSF) to aid sustainable decision making in rural Queensland. This particular branch of the research developed a decision support tool that will become the integrating component of the RSSF. This tool is developed on the web-based platform to allow easy dissemination, quick maintenance and to minimise compatibility issues. The tool is developed based on MapGuide Open Source and it follows the three-tier architecture: Client tier, Web tier and the Server tier. The developed tool is interactive and behaves similar to a familiar desktop-based application. It has the capability to handle and display vector-based spatial data and can give further visual outputs using charts and tables. The data used in this tool is obtained from the QUT research team. Overall the tool implements four tasks to help in the decision-making process. These are the Locality Classification, Trend Display, Impact Assessment and Data Entry and Update. The developed tool utilises open source and freely available software and accounts for easy extensibility and long-term sustainability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

...the probabilistic computer simulation study by Dunham and colleagues evaluating the impact of different cervical spine management (CSM) strategies on tetraplegia and brain injury outcomes.1 Based on literature findings, expert opinion and with use of advances programming techniques the authors conclude that early collar removal without cervical spine magnetic resonance imaging (MRI) is a preferable CSM strategy for comatose, blunt trauma patients with extremity movement and a negative cervical spine computed tomography(CT) scan. Although we do not have the required expertise to comment on the applied statistical approach, we would like to comment on one of the medical assumptions raised by the authors, namely the likelihood of tetraplegia in this specific population....

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuous user authentication with keystroke dynamics uses characters sequences as features. Since users can type characters in any order, it is imperative to find character sequences (n-graphs) that are representative of user typing behavior. The contemporary feature selection approaches do not guarantee selecting frequently-typed features which may cause less accurate statistical user-representation. Furthermore, the selected features do not inherently reflect user typing behavior. We propose four statistical based feature selection techniques that mitigate limitations of existing approaches. The first technique selects the most frequently occurring features. The other three consider different user typing behaviors by selecting: n-graphs that are typed quickly; n-graphs that are typed with consistent time; and n-graphs that have large time variance among users. We use Gunetti’s keystroke dataset and k-means clustering algorithm for our experiments. The results show that among the proposed techniques, the most-frequent feature selection technique can effectively find user representative features. We further substantiate our results by comparing the most-frequent feature selection technique with three existing approaches (popular Italian words, common n-graphs, and least frequent ngraphs). We find that it performs better than the existing approaches after selecting a certain number of most-frequent n-graphs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the feasibility of the application of an Imputer in a multiple choice answer sheet marking system based on image processing techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibre composite structures have become the most attractive candidate for civil engineering applications. Fibre reinforced plastic polymer (FRP) composite materials have been used in the rehabilitation and replacement of the old degrading traditional structures or build new structures. However, the lack of design standards for civil infrastructure limits their structural applications. The majority of the existing applications have been designed based on the research and guidelines provided by the fibre composite manufacturers or based on the designer’s experience. It has been a tendency that the final structure is generally over-designed. This paper provides a review on the available studies related to the design optimization of fibre composite structures used in civil engineering such as; plate, beam, box beam, sandwich panel, bridge girder, and bridge deck. Various optimization methods are presented and compared. In addition, the importance of using the appropriate optimization technique is discussed. An improved methodology, which considering experimental testing, numerical modelling, and design constrains, is proposed in the paper for design optimization of composite structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiotherapy is a cancer treatment modality in which a dose of ionising radiation is delivered to a tumour. The accurate calculation of the dose to the patient is very important in the design of an effective therapeutic strategy. This study aimed to systematically examine the accuracy of the radiotherapy dose calculations performed by clinical treatment planning systems by comparison againstMonte Carlo simulations of the treatment delivery. A suite of software tools known as MCDTK (Monte Carlo DICOM ToolKit) was developed for this purpose, and is capable of: • Importing DICOM-format radiotherapy treatment plans and producing Monte Carlo simulation input files (allowing simple simulation of complex treatments), and calibrating the results; • Analysing the predicted doses of and deviations between the Monte Carlo simulation results and treatment planning system calculations in regions of interest (tumours and organs-at-risk) and generating dose-volume histograms, so that conformity with dose prescriptions can be evaluated. The code has been tested against various treatment planning systems, linear acceleratormodels and treatment complexities. Six clinical head and neck cancer treatments were simulated and the results analysed using this software. The deviations were greatest where the treatment volume encompassed tissues on both sides of an air cavity. This was likely due to the method the planning system used to model low density media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Australia, there is only one, newly established, dedicated mental health service catering specifically for the signing *Deaf community. It is staffed by four part-time hearing professionals and based in Brisbane. There are currently no Deaf psychologists or psychiatrists and there is no valid or reliable empirical evidence on outcomes for Deaf people accessing specialised or mainstream mental health services. Further compounding these issues, is the fact that there are no sign language versions of the most common standardised mental health or psychological instruments available to clinicians in Australia. Contemporary counselling literature is acknowledging the role of the therapeutic alliance and the impact of 'common factors' on therapeutic outcomes. However, these issues are complicated by the relationship between the Deaf client and the hearing therapist being a cross-cultural exchange. The disability model of deafness is contentious and few professionals in Australia have the requisite knowledge and understanding of deafness from a cultural perspective to attend to the therapeutic relationship with this in mind. Consequently, Deaf people are severely disadvantaged by the current lack of services, resources and skilled professionals in the field of deafness and psychology in this country. The primary aim of the following program of research has been to propose a model for culturally affirmative service delivery and to provide clinicians with tools to evaluate the effect of their therapeutic work with Deaf people seeking mental health treatment. The research document is presented as a thesis by publication and comprises four specific objectives formulated in response to the lack of existing services and resources. The first objective was to explore the use of social constructionist counselling techniques and a reflecting team with Deaf clients, hearing therapists and an interpreter. Following the establishment of a pilot counselling clinic, indepth semi-structured interviews were conducted with two long-term clients following the one year pilot of this service. These interviews generated recommendations for the development of a new 'enriched' model of counselling to be implemented and evaluated in later stages of the research program. The second objective was to identify appropriate psychometric measures that could be translated into Australian Sign Language (Auslan) for research into efficacy, effectiveness and counselling outcomes. Two instruments were identified as potentially suitable; the Outcome Rating Scale (ORS), a measure of global functioning, and the Session Rating Scale (SRS), a measure of therapeutic alliance. A specialised team of bi-lingual and bi-cultural interpreters, native signers and the primary researcher for this thesis, produced the ORS-Auslan and the SRS-Auslan in DVD format, using the translation and back-translation process. The third objective was to establish the validity and reliability of these new Auslan measures based on normative data from the Deaf community. Data from the ORS-Auslan was collected from one clinical and one non-clinical sample of Deaf people. Statistical analyses revealed that the ORS-Auslan is reliable, valid and adequately distinguishes between clinical and non-clinical presentations. Furthermore, construct validity has been established using a yet to be validated sign language version of the Depression, Anxiety and Stress Scale-21 items (DASS-21), providing a platform for further research using the DASS-21 with Deaf people. The fourth objective was to evaluate counselling outcomes following the implementation of an enriched counselling service, based on the findings generated by the first objective, and using the newly translated Auslan measures. A second university counselling clinic was established and implemented over the course of one year. Practice-based evidence guided the research and the ORS-Auslan and the SRS-Auslan were administered at every session and provided outcome data on Deaf clients' global functioning. Data from six clients over the course of ten months indicated that this culturally affirmative model was an effective approach for these six clients. This is the first time that outcome data have been collected in Australia using valid and reliable Auslan measures to establish preliminary evidence for the effectiveness of any therapeutic intervention for clinical work with adult, signing Deaf clients. The research generated by this thesis contributes theoretical knowledge, professional development and practical resources that can be used by a variety of mental health clinicians in the context of mental health service delivery to Deaf clients in Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research objectives of this thesis were to contribute to Bayesian statistical methodology by contributing to risk assessment statistical methodology, and to spatial and spatio-temporal methodology, by modelling error structures using complex hierarchical models. Specifically, I hoped to consider two applied areas, and use these applications as a springboard for developing new statistical methods as well as undertaking analyses which might give answers to particular applied questions. Thus, this thesis considers a series of models, firstly in the context of risk assessments for recycled water, and secondly in the context of water usage by crops. The research objective was to model error structures using hierarchical models in two problems, namely risk assessment analyses for wastewater, and secondly, in a four dimensional dataset, assessing differences between cropping systems over time and over three spatial dimensions. The aim was to use the simplicity and insight afforded by Bayesian networks to develop appropriate models for risk scenarios, and again to use Bayesian hierarchical models to explore the necessarily complex modelling of four dimensional agricultural data. The specific objectives of the research were to develop a method for the calculation of credible intervals for the point estimates of Bayesian networks; to develop a model structure to incorporate all the experimental uncertainty associated with various constants thereby allowing the calculation of more credible credible intervals for a risk assessment; to model a single day’s data from the agricultural dataset which satisfactorily captured the complexities of the data; to build a model for several days’ data, in order to consider how the full data might be modelled; and finally to build a model for the full four dimensional dataset and to consider the timevarying nature of the contrast of interest, having satisfactorily accounted for possible spatial and temporal autocorrelations. This work forms five papers, two of which have been published, with two submitted, and the final paper still in draft. The first two objectives were met by recasting the risk assessments as directed, acyclic graphs (DAGs). In the first case, we elicited uncertainty for the conditional probabilities needed by the Bayesian net, incorporated these into a corresponding DAG, and used Markov chain Monte Carlo (MCMC) to find credible intervals, for all the scenarios and outcomes of interest. In the second case, we incorporated the experimental data underlying the risk assessment constants into the DAG, and also treated some of that data as needing to be modelled as an ‘errors-invariables’ problem [Fuller, 1987]. This illustrated a simple method for the incorporation of experimental error into risk assessments. In considering one day of the three-dimensional agricultural data, it became clear that geostatistical models or conditional autoregressive (CAR) models over the three dimensions were not the best way to approach the data. Instead CAR models are used with neighbours only in the same depth layer. This gave flexibility to the model, allowing both the spatially structured and non-structured variances to differ at all depths. We call this model the CAR layered model. Given the experimental design, the fixed part of the model could have been modelled as a set of means by treatment and by depth, but doing so allows little insight into how the treatment effects vary with depth. Hence, a number of essentially non-parametric approaches were taken to see the effects of depth on treatment, with the model of choice incorporating an errors-in-variables approach for depth in addition to a non-parametric smooth. The statistical contribution here was the introduction of the CAR layered model, the applied contribution the analysis of moisture over depth and estimation of the contrast of interest together with its credible intervals. These models were fitted using WinBUGS [Lunn et al., 2000]. The work in the fifth paper deals with the fact that with large datasets, the use of WinBUGS becomes more problematic because of its highly correlated term by term updating. In this work, we introduce a Gibbs sampler with block updating for the CAR layered model. The Gibbs sampler was implemented by Chris Strickland using pyMCMC [Strickland, 2010]. This framework is then used to consider five days data, and we show that moisture in the soil for all the various treatments reaches levels particular to each treatment at a depth of 200 cm and thereafter stays constant, albeit with increasing variances with depth. In an analysis across three spatial dimensions and across time, there are many interactions of time and the spatial dimensions to be considered. Hence, we chose to use a daily model and to repeat the analysis at all time points, effectively creating an interaction model of time by the daily model. Such an approach allows great flexibility. However, this approach does not allow insight into the way in which the parameter of interest varies over time. Hence, a two-stage approach was also used, with estimates from the first-stage being analysed as a set of time series. We see this spatio-temporal interaction model as being a useful approach to data measured across three spatial dimensions and time, since it does not assume additivity of the random spatial or temporal effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Breastfeeding is the internationally accepted ideal in infant feeding. Ensuring mothers and babies receive optimal benefits, in both the short and long term, is dependent upon the successful establishment of breastfeeding in the first week. Many maternal and infant challenges can occur during the establishment of breastfeeding (Lactogenesis II). There are also many methods and devices (alternative techniques) which can be used to help, but the majority do not have an evidence-base. The mother.s self-confidence (self-efficacy) can be challenged by these unexpected circumstances, but understanding of the relationship is unclear. Method: This descriptive study used mail survey (including the Breastfeeding Self-Efficacy Scale . Short Form) to obtain the mother.s reports of their self-efficacy and their breastfeeding experience during the first week following birth, as well as actual use of alternative techniques. This study included all mothers of full term healthy singleton infants from one private hospital in Brisbane who began any breastfeeding. The data collection took place from November 2008 to February 2009. Ethical approval was granted from the research site and QUT Human Research Ethics Committee. Results: A total of 128 questionnaires were returned, a response rate of 56.9%. The sample was dissimilar to the Queensland population with regard to age, income, and education level, all of which were higher in this study. The sample was similar to the Queensland population in terms of parity and marital status. The rate of use of alternative techniques was 48.3%. The mean breastfeeding self-efficacy score of those who used any alternative technique was 43.43 (SD=12.19), and for those who did not, it was 58.32 (SD=7.40). Kruskal-Wallis analysis identified that the median self efficacy score for those who used alternative techniques was significantly lower than median self efficacy scores for those who did not use alternative techniques. The reasons women used alternative techniques varied widely, and their knowledge of alternative techniques was good. Conclusion: This study is the first to document breastfeeding self-efficacy of women who used alternative techniques to support their breastfeeding goals in the first week postpartum. An individualised clinical intervention to develop women.s self-efficacy with breastfeeding is important to assist mother/infant dyads encountering challenges to breastfeeding in the first week postpartum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Failing injectors are one of the most common faults in diesel engines. The severity of these faults could have serious effects on diesel engine operations such as engine misfire, knocking, insufficient power output or even cause a complete engine breakdown. It is thus essential to prevent such faults from occurring by monitoring the condition of these injectors. In this paper, the authors present the results of an experimental investigation on identifying the signal characteristics of a simulated incipient injector fault in a diesel engine using both in-cylinder pressure and acoustic emission (AE) techniques. A time waveform event driven synchronous averaging technique was used to minimize or eliminate the effect of engine speed variation and amplitude fluctuation. It was found that AE is an effective method to detect the simulated injector fault in both time (crank angle) and frequency (order) domains. It was also shown that the time domain in-cylinder pressure signal is a poor indicator for condition monitoring and diagnosis of the simulated injector fault due to the small effect of the simulated fault on the engine combustion process. Nevertheless, good correlations between the simulated injector fault and the lower order components of the enveloped in-cylinder pressure spectrum were found at various engine loading conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-invasive vibration analysis has been used extensively to monitor the progression of dental implant healing and stabilization. It is now being considered as a method to monitor femoral implants in transfemoral amputees. This paper evaluates two modal analysis excitation methods and investigates their capabilities in detecting changes at the interface between the implant and the bone that occur during osseointegration. Excitation of bone-implant physical models with the electromagnetic shaker provided higher coherence values and a greater number of modes over the same frequency range when compared to the impact hammer. Differences were detected in the natural frequencies and fundamental mode shape of the model when the fit of the implant was altered in the bone. The ability to detect changes in the model dynamic properties demonstrates the potential of modal analysis in this application and warrants further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this thesis is to analyse and optimise a public hospital Emergency Department. The Emergency Department (ED) is a complex system with limited resources and a high demand for these resources. Adding to the complexity is the stochastic nature of almost every element and characteristic in the ED. The interaction with other functional areas also complicates the system as these areas have a huge impact on the ED and the ED is powerless to change them. Therefore it is imperative that OR be applied to the ED to improve the performance within the constraints of the system. The main characteristics of the system to optimise included tardiness, adherence to waiting time targets, access block and length of stay. A validated and verified simulation model was built to model the real life system. This enabled detailed analysis of resources and flow without disruption to the actual ED. A wide range of different policies for the ED and a variety of resources were able to be investigated. Of particular interest was the number and type of beds in the ED and also the shift times of physicians. One point worth noting was that neither of these resources work in isolation and for optimisation of the system both resources need to be investigated in tandem. The ED was likened to a flow shop scheduling problem with the patients and beds being synonymous with the jobs and machines typically found in manufacturing problems. This enabled an analytic scheduling approach. Constructive heuristics were developed to reactively schedule the system in real time and these were able to improve the performance of the system. Metaheuristics that optimised the system were also developed and analysed. An innovative hybrid Simulated Annealing and Tabu Search algorithm was developed that out-performed both simulated annealing and tabu search algorithms by combining some of their features. The new algorithm achieves a more optimal solution and does so in a shorter time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal-infrared images have superior statistical properties compared with visible-spectrum images in many low-light or no-light scenarios. However, a detailed understanding of feature detector performance in the thermal modality lags behind that of the visible modality. To address this, the first comprehensive study on feature detector performance on thermal-infrared images is conducted. A dataset is presented which explores a total of ten different environments with a range of statistical properties. An investigation is conducted into the effects of several digital and physical image transformations on detector repeatability in these environments. The effect of non-uniformity noise, unique to the thermal modality, is analyzed. The accumulation of sensor non-uniformities beyond the minimum possible level was found to have only a small negative effect. A limiting of feature counts was found to improve the repeatability performance of several detectors. Most other image transformations had predictable effects on feature stability. The best-performing detector varied considerably depending on the nature of the scene and the test.