986 resultados para soil organic carbon


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Past changes in sea-surface productivity in the Oyashio Current are evaluated on the basis of abundances of biological constituents in sediments from Leg 186 sites. Organic carbon contents at Sites 1150 and 1151 are moderate (0.5 to 1.5 wt%) and have an algal origin as indicated by low C/N ratios (<10) and by carbon isotopic compositions ranging from -23.4 to -21.3. A decreasing trend in organic carbon contents, carbon isotope ratios, and C/N ratios occurs with depth at both sites, probably as a consequence of diagenetic degradation of organic matter. Mass accumulation rates (MARs) determined for organic carbon and carbonates at Sites 1150 and 1151 show an abrupt increase between ~5 and 7 Ma. Similar results have been reported for sites in the Indian Ocean and the Pacific Ocean for the same time interval. As it has been previously suggested, the observed increase in MAR for both carbonate and organic carbon at Leg 186 sites probably resulted from augmented nutrient supply either from continental sources or from a more vigorous ocean circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent evidence that dissolved organic carbon (DOC) is a significant component of the organic carbon flux below the photic layer of the ocean (1), together with verification of high respiration rates in the dark ocean (2), suggests that the downward flux of DOC may play a major role in supporting respiration there. Here we show, on the basis of examination of the relation between DOC and apparent oxygen utilization (AOU), that the DOC flux supports ~10% of the respiration in the dark ocean. The contribution of DOC to pelagic respiration below the surface mixed layer can be inferred from the relation between DOC and apparent oxygen utilization (AOU, µM O2), a variable quantifying the cumulative oxygen consumption since a water parcel was last in contact with the atmosphere. However, assessments of DOC/AOU relations have been limited to specific regions of the ocean (3, 4) and have not considered the global ocean. We assembled a large data set (N = 9824) of concurrent DOC and AOU observations collected in cruises conducted throughout the world's oceans (fig. S1, table S1) to examine the relative contribution of DOC to AOU and, therefore, respiration in the dark ocean. AOU increased from an average (±SE) 96.3 ± 2.0 µM at the base of the surface mixed layer (100 m) to 165.5 ± 4.3 µM at the bottom of the main thermocline (1000 m), with a parallel decline in the average DOC from 53.5 ± 0.2 to 43.4 ± 0.3 µM C (Fig. 1). In contrast, there is no significant decline in DOC with increasing depth beyond 1000 m depth (Fig. 1), indicating that DOC exported with overturning circulation plays a minor role in supporting respiration in the ocean interior (5). Assuming a molar respiratory quotient of 0.69, the decline in DOC accounts for 19.6 ± 0.4% of the AOU within the top 1000 m (Fig. 1). This estimate represents, however, an upper limit, because the correlation between DOC and AOU is partly due to mixing of DOC-rich warm surface waters with DOC-poor cold thermocline waters (6). Removal of this effect by regressing DOC against AOU and water temperature indicates that DOC supports only 8.4 ± 0.3% of the respiration in the mesopelagic waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lipids and kerogens of 15 sediment samples from Site 547 (ranging from Pleistocene to Early Jurassic/Triassic) and 4 from Site 545 (Cretaceous) have been analyzed. A strong terrestrial contribution of organic matter was found, and significant autochthonous inputs were also present, especially at Site 545. Both strongly reduced and highly oxidized sediments have been found in the Cenozoic and Jurassic samples of Site 547. On the contrary, all the Cretaceous sections of Sites 547 and 545 are anoxic. Sediments from anoxic paleoenvironments are immature and have a high content of sterenes, diasterenes, steradienes, hopenes, and ßß hopanes. Samples from oxic paleoenvironments are mainly mature and their content of hopenes and steriod structures is below the detection level. Nevertheless, their hopane distributions have the immature ßß homologs as the predominant molecular markers. For Site 545 the most abundant molecular markers are ring A monoaromatic steranes, and their presence is attributed to microbial and chemical transformations during early diagenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arctic soils contain a large fraction of Earth's stored carbon. Temperature increases in the Arctic may enhance decomposition of this stored carbon, shifting the role of Arctic soils from a net sink to a new source of atmospheric CO2. Predicting the impact of Arctic warming on soil carbon reserves requires knowledge of the composition of the stored organic matter. Here, we employ solid state 13C nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS) to investigate the chemical composition of soil organic matter collected from drained thaw-lake basins ranging in age from 0 to 5500 years before present (y BP). The 13C NMR and FTIR-PAS data were largely congruent. Surface horizons contain relatively large amounts of O-alkyl carbon, suggesting that the soil organic matter is rich in labile constituents. Soil organic matter decreases with depth with the relative amounts of O-alkyl carbon decreasing and aromatic carbon increasing. These data indicate that lower horizons are in a more advanced stage of decomposition than upper horizons. Nonetheless, a substantial fraction of carbon in lower horizons, even for ancient thaw-lake basins (2000-5500 y BP), is present as O-alkyl carbon reflecting the preservation of intrinsically labile organic matter constituents. Climate change-induced increases in the depth of the soil active layer are expected to accelerate the depletion of this carbon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Bound" and "free" solvent-extractable lipids have been examined from Sections 440A-7-6, 440B-3-5, 440B-8-4, 440B-68-2, and 436-11-4. The compound classes studied include aliphatic and aromatic hydrocarbons, ketones, alcohols, and carboxylic acids. Carotenoids and humic acids have also been examined. The quantitative results are considered in terms of input indicators, diagenesis parameters, and structural classes. A difference in input is deduced across the Japan Trench, with a higher proportion of autochthonous components on the western inner trench slope compared with the more easterly, outer trench, wall and greater input in the early Pleistocene than in the Miocene. A variety of diagenetic transformations is observed at Site 440 as sample depth increases. Results are compared with those of samples from Atlantic Cretaceous sediments and from the Walvis Bay high productivity area.