705 resultados para processore, applicazione mobile, didattica


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this project, the main focus is to apply image processing techniques in computer vision through an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods as structured heuristics methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained. ©2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Severely disabled children have little chance of environmental and social exploration and discovery. This lack of interaction and independency may lead to an idea that they are unable to do anything by themselves. In an attempt to help children in this situation, educational robotics can offer and aid, once it can provide them a certain degree of independency in the exploration of environment. The system developed in this work allows the child to transmit the commands to a robot through myoelectric and movement sensors. The sensors are placed on the child's body so they can obtain information from the body inclination and muscle contraction, thus allowing commanding, through a wireless communication, the mobile entertainment robot to carry out tasks such as play with objects and draw. In this paper, the details of the robot design and control architecture are presented and discussed. With this system, disabled children get a better cognitive development and social interaction, balancing in a certain way, the negative effects of their disabilities. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an Advanced Traveler Information System (ATIS) developed on Android platform, which is open source and free. The developed application has as its main objective the free use of a Vehicle-to- Infrastructure (V2I) communication through the wireless network access points available in urban centers. In addition to providing the necessary information for an Intelligent Transportation System (ITS) to a central server, the application also receives the traffic data close to the vehicle. Once obtained this traffic information, the application displays them to the driver in a clear and efficient way, allowing the user to make decisions about his route in real time. The application was tested in a real environment and the results are presented in the article. In conclusion we present the benefits of this application. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents and discusses the main topics involved on the design of a mobile robot system and focus on the control and navigation systems for autonomous mobile robots. Introduces the main aspects of the Robot design, which is a holistic vision about all the steps of the development process of an autonomous mobile robot; discusses the problems addressed to the conceptualization of the mobile robot physical structure and its relation to the world. Presents the dynamic and control analysis for navigation robots with kinematic and dynamic model and, for final, presents applications for a robotic platform of Automation, Simulation, Control and Supervision of Mobile Robots Navigation, with studies of dynamic and kinematic modelling, control algorithms, mechanisms for mapping and localization, trajectory planning and the platform simulator. © 2012 Praise Worthy Prize S.r.l. - All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a trajectory tracking control problem for a nonholonomic mobile robot by the integration of a kinematic neural controller (KNC) and a torque neural controller (TNC) is proposed, where both the kinematic and dynamic models contains disturbances. The KNC is a variable structure controller (VSC) based on the sliding mode control theory (SMC), and applied to compensate the kinematic disturbances. The TNC is a inertia-based controller constituted of a dynamic neural controller (DNC) and a robust neural compensator (RNC), and applied to compensate the mobile robot dynamics, and bounded unknown disturbances. Stability analysis with basis on Lyapunov method and simulations results are provided to show the effectiveness of the proposed approach. © 2012 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of mobile robots turns out to be interesting in activities where the action of human specialist is difficult or dangerous. Mobile robots are often used for the exploration in areas of difficult access, such as rescue operations and space missions, to avoid human experts exposition to risky situations. Mobile robots are also used in agriculture for planting tasks as well as for keeping the application of pesticides within minimal amounts to mitigate environmental pollution. In this paper we present the development of a system to control the navigation of an autonomous mobile robot through tracks in plantations. Track images are used to control robot direction by preprocessing them to extract image features. Such features are then submitted to a support vector machine in order to find out the most appropriate route. The overall goal of the project to which this work is connected is to develop a real time robot control system to be embedded into a hardware platform. In this paper we report the software implementation of a support vector machine, which so far presented around 93% accuracy in predicting the appropriate route. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, different techniques of navigation for mobile robots have been developed. However, the experimentation of these techniques is not a trivial task because usually it is not possible to reuse the developed control software due to system incompabilities. This paper proposes a software platform that provides means for creating reusable software modules through the standardization of software interfaces, which represent the various robot modules. © 2012 ICROS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multisensor data fusion is a technique that combines the readings of multiple sensors to detect some phenomenon. Data fusion applications are numerous and they can be used in smart buildings, environment monitoring, industry and defense applications. The main goal of multisensor data fusion is to minimize false alarms and maximize the probability of detection based on the detection of multiple sensors. In this paper a local data fusion algorithm based on luminosity, temperature and flame for fire detection is presented. The data fusion approach was embedded in a low cost mobile robot. The prototype test validation has indicated that our approach can detect fire occurrence. Moreover, the low cost project allow the development of robots that could be discarded in their fire detection missions. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Artes - IA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of mobile robots turns out to be interesting in activities where the action of human specialist is difficult or dangerous. Mobile robots are often used for the exploration in areas of difficult access, such as rescue operations and space missions, to avoid human experts exposition to risky situations. Mobile robots are also used in agriculture for planting tasks as well as for keeping the application of pesticides within minimal amounts to mitigate environmental pollution. In this paper we present the development of a system to control the navigation of an autonomous mobile robot through tracks in plantations. Track images are used to control robot direction by pre-processing them to extract image features. Such features are then submitted to a support vector machine and an artificial neural network in order to find out the most appropriate route. A comparison of the two approaches was performed to ascertain the one presenting the best outcome. The overall goal of the project to which this work is connected is to develop a real time robot control system to be embedded into a hardware platform. In this paper we report the software implementation of a support vector machine and of an artificial neural network, which so far presented respectively around 93% and 90% accuracy in predicting the appropriate route. (C) 2013 The Authors. Published by Elsevier B.V. Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)