879 resultados para predictive regression
Resumo:
La relation mère-enfant a une influence sur le développement de l’enfant. Cette étude vise principalement à vérifier si la sensibilité maternelle modère l’expression du tempérament difficile de l’enfant à 9 mois. Elle vise également à vérifier si la relation d’attachement sécurisante / insécurisante modère le développement de comportements perturbateurs chez les enfants de 24 mois. Les données de l’étude La mère veille ont été employées. L’échantillon compte 96 mères adolescentes, âgées entre 14 et 19 ans, provenant de deux (2) milieux distincts : une école spécialisée pour mères adolescentes et un foyer de groupe. Des analyses de régression multiple n’ont pas confirmé l’effet modérateur de la sensibilité maternelle sur l’expression du tempérament difficile de l’enfant à 9 mois. Les analyses ont cependant montré un effet prédictif de l’attachement sécurisant / insécurisant sur le développement des comportements perturbateurs à 24 mois. En effet, un enfant qui a développé un attachement sécurisant envers sa mère est moins à risque d’émettre des comportements perturbateurs à l’âge de 24 mois. Les résultats ne permettent cependant pas de confirmer que l’effet observé est modérateur.
Resumo:
Avec la mise en place de la nouvelle limite maximale de 400 000 cellules somatiques par millilitres de lait (c/mL) au réservoir, le mois d’août 2012 a marqué une étape importante en termes de qualité du lait pour les producteurs de bovins laitiers du Canada. L’objectif de cette étude consistait en l’établissement d’un modèle de prédiction de la violation de cette limite au réservoir à l’aide des données individuelles et mensuelles de comptages en cellules somatiques (CCS) obtenues au contrôle laitier des mois précédents. Une banque de donnée DSA comprenant 924 troupeaux de laitiers québécois, en 2008, a été utilisée pour construire un modèle de régression logistique, adapté pour les mesures répétées, de la probabilité d’excéder 400 000 c/mL au réservoir. Le modèle final comprend 6 variables : le pointage linéaire moyen au test précédent, la proportion de CCS > 500 000 c/mL au test précédent, la production annuelle moyenne de lait par vache par jour, le nombre de jours en lait moyen (JEL) au test précédent ainsi que les proportions de vaches saines et de vaches infectées de manière chronique au test précédant. Le modèle montre une excellente discrimination entre les troupeaux qui excèdent ou n’excèdent pas la limite lors d’un test et pourrait être aisément utilisé comme outil supplémentaire de gestion de la santé mammaire à la ferme.
Resumo:
La dépression est une psychopathologie répandue qui débute fréquemment au cours de l’adolescence. Maintes répercussions tant personnelles qu’économiques et sociales ont été associées à ce trouble. Plusieurs facteurs, dont la consommation de cannabis, ont été identifiés comme étant susceptibles d’influencer l’apparition et le développement de symptômes dépressifs. Il existe toutefois une absence de consensus par rapport au lien entre la consommation de cannabis et les symptômes dépressifs à l’adolescence, qui pourrait notamment résulter de différences méthodologiques telles que le contrôle de tierces variables. Parmi ces variables, la relation parent-adolescent pourrait modérer la relation entre la consommation de cannabis et les symptômes dépressifs. Ce mémoire vise d’une part à vérifier la relation entre la consommation de cannabis et la manifestation de symptômes dépressifs à l’adolescence et, d’autre part, le rôle modérateur de la relation parent-adolescent sur ce lien. L’échantillon compte 1 740 adolescents québécois suivis longitudinalement du secondaire II au secondaire IV. Des analyses de régression multiple hiérarchique ont été effectuées afin de tester les hypothèses à l’étude. Les résultats démontrent une faible relation positive entre la consommation de cannabis en secondaire II et les symptômes dépressifs évalués deux ans plus tard. Par ailleurs, une seule dimension de la relation parent-adolescent, soit le faible soutien parental, a été identifiée comme ayant un pouvoir prédictif sur les symptômes dépressifs. Cet effet d’interaction explique néanmoins une variance insuffisante pour être significatif d’un point de vue clinique. Les implications de ces résultats pour la recherche sont discutées.
Resumo:
Le suivi thérapeutique est recommandé pour l’ajustement de la dose des agents immunosuppresseurs. La pertinence de l’utilisation de la surface sous la courbe (SSC) comme biomarqueur dans l’exercice du suivi thérapeutique de la cyclosporine (CsA) dans la transplantation des cellules souches hématopoïétiques est soutenue par un nombre croissant d’études. Cependant, pour des raisons intrinsèques à la méthode de calcul de la SSC, son utilisation en milieu clinique n’est pas pratique. Les stratégies d’échantillonnage limitées, basées sur des approches de régression (R-LSS) ou des approches Bayésiennes (B-LSS), représentent des alternatives pratiques pour une estimation satisfaisante de la SSC. Cependant, pour une application efficace de ces méthodologies, leur conception doit accommoder la réalité clinique, notamment en requérant un nombre minimal de concentrations échelonnées sur une courte durée d’échantillonnage. De plus, une attention particulière devrait être accordée à assurer leur développement et validation adéquates. Il est aussi important de mentionner que l’irrégularité dans le temps de la collecte des échantillons sanguins peut avoir un impact non-négligeable sur la performance prédictive des R-LSS. Or, à ce jour, cet impact n’a fait l’objet d’aucune étude. Cette thèse de doctorat se penche sur ces problématiques afin de permettre une estimation précise et pratique de la SSC. Ces études ont été effectuées dans le cadre de l’utilisation de la CsA chez des patients pédiatriques ayant subi une greffe de cellules souches hématopoïétiques. D’abord, des approches de régression multiple ainsi que d’analyse pharmacocinétique de population (Pop-PK) ont été utilisées de façon constructive afin de développer et de valider adéquatement des LSS. Ensuite, plusieurs modèles Pop-PK ont été évalués, tout en gardant à l’esprit leur utilisation prévue dans le contexte de l’estimation de la SSC. Aussi, la performance des B-LSS ciblant différentes versions de SSC a également été étudiée. Enfin, l’impact des écarts entre les temps d’échantillonnage sanguins réels et les temps nominaux planifiés, sur la performance de prédiction des R-LSS a été quantifié en utilisant une approche de simulation qui considère des scénarios diversifiés et réalistes représentant des erreurs potentielles dans la cédule des échantillons sanguins. Ainsi, cette étude a d’abord conduit au développement de R-LSS et B-LSS ayant une performance clinique satisfaisante, et qui sont pratiques puisqu’elles impliquent 4 points d’échantillonnage ou moins obtenus dans les 4 heures post-dose. Une fois l’analyse Pop-PK effectuée, un modèle structural à deux compartiments avec un temps de délai a été retenu. Cependant, le modèle final - notamment avec covariables - n’a pas amélioré la performance des B-LSS comparativement aux modèles structuraux (sans covariables). En outre, nous avons démontré que les B-LSS exhibent une meilleure performance pour la SSC dérivée des concentrations simulées qui excluent les erreurs résiduelles, que nous avons nommée « underlying AUC », comparée à la SSC observée qui est directement calculée à partir des concentrations mesurées. Enfin, nos résultats ont prouvé que l’irrégularité des temps de la collecte des échantillons sanguins a un impact important sur la performance prédictive des R-LSS; cet impact est en fonction du nombre des échantillons requis, mais encore davantage en fonction de la durée du processus d’échantillonnage impliqué. Nous avons aussi mis en évidence que les erreurs d’échantillonnage commises aux moments où la concentration change rapidement sont celles qui affectent le plus le pouvoir prédictif des R-LSS. Plus intéressant, nous avons mis en exergue que même si différentes R-LSS peuvent avoir des performances similaires lorsque basées sur des temps nominaux, leurs tolérances aux erreurs des temps d’échantillonnage peuvent largement différer. En fait, une considération adéquate de l'impact de ces erreurs peut conduire à une sélection et une utilisation plus fiables des R-LSS. Par une investigation approfondie de différents aspects sous-jacents aux stratégies d’échantillonnages limités, cette thèse a pu fournir des améliorations méthodologiques notables, et proposer de nouvelles voies pour assurer leur utilisation de façon fiable et informée, tout en favorisant leur adéquation à la pratique clinique.
Resumo:
Cette étude a été rendue possible grâce aux bourses doctorales accordées à la première auteure par les organismes suivants : le Conseil de recherche en sciences humaines (CRSH), la Chaire interuniversitaire Marie-Vincent sur les agressions sexuelles envers les enfants (CIMV), l’Équipe violence sexuelle et santé (ÉVISSA) et le Centre de recherche interdisciplinaire sur les problèmes conjugaux et les agressions sexuelles (CRIPCAS). Cette étude a également été soutenue par une subvention de recherche accordée par le Bureau d’aide aux victimes d’actes criminelle (BAVAC) du ministère de la justice du Québec accordée à Mireille Cyr.
Resumo:
Cette étude vise à examiner la relation entre les pratiques parentales utilisées durant la période de l'enfance et les dimensions principales du du trouble déficitaire de l'attention avec hyperactivité (TDAH) à l'adolescence, soit l’inattention, l’hyperactivité et l’impulsivité. Les pratiques spécifiques parentales (engagement, pratiques parentales appropriée, supervision, punitions corporelles, discipline appropriée, discipline sévère et incohérente, discipline verbale positive, félicitations et récompenses, et les attentes claires) et les aspects du fonctionnement familial (communication, résolution de problèmes, rôles dans la famille, sensibilité affective, engagement affectif, contrôle comportemental) ont été examinés par rapport à l'inattention et d'hyperactivité. Trente-six enfants de 6 à 9 ans et leurs parents ont participé à une étude longitudinale de 5 ans. Il y a un manque d'études longitudinales dans ce domaine et cette étude vise à combler cette lacune. Les résultats ne montrent pas de résultats significatifs dans la relation entre les pratiques parentales utilisées dans l'enfance et les symptômes principaux de l'hyperactivité et l'inattention à l'adolescence. Les études futures devraient se concentrer sur la relation entre la psychopathologie parentale et les principaux symptômes du TDAH de l'enfance à l'adolescence, ainsi que l'impact des pratiques parentales sur ces principaux symptômes.
Resumo:
The main objective of this letter is to formulate a new approach of learning a Mahalanobis distance metric for nearest neighbor regression from a training sample set. We propose a modified version of the large margin nearest neighbor metric learning method to deal with regression problems. As an application, the prediction of post-operative trunk 3-D shapes in scoliosis surgery using nearest neighbor regression is described. Accuracy of the proposed method is quantitatively evaluated through experiments on real medical data.
Resumo:
In the twentieth century, as technology grew with it. This resulted in collective efforts and thinking in the direction of controlling work related hazards and accidents. Thus, safety management developed and became an important part of industrial management. While considerable research has been reported on the topic of safety management in industries from various parts of the world, there is scarcity of literature from India. It is logical to think that a clear understanding of the critical safety management practices and their relationships with accident rates and management system certifications would help in the development and implementation of safety management systems. In the first phase of research, a set of six critical safety management practices has been identified based on a thorough review of the prescriptive, practitioner, conceptual and empirical literature. An instrument for measuring the level of practice of these safety conduction a survey using questionnaire in chemical/process industry. The instrument has been empirically validated using Confirmatory Factor Analysis (CFA) approach. As the second step. Predictive validity of safety management practices and the relationship between safety management practices and self-reported accident rates and management system certifications have been investigated using ANOVA. Results of the ANOVA tests show that there is significant difference in the identified safety management practices and the determinants of safety performance have been investigated using Multiple Regression Analysis. The inter-relationships between safety management practices, determinants of safety performance and components of safety performance have been investigated with the help of structural equation modeling. Further investigations into engineering and construction industries reveal that safety climate factors are not stable across industries. However, some factors are found to be common in industries irrespective of the type of industry. This study identifies the critical safety management practices in major accident hazard chemical/process industry from the perspective of employees and the findings empirically support the necessity for obtaining safety specific management system certifications
Resumo:
During 1990's the Wavelet Transform emerged as an important signal processing tool with potential applications in time-frequency analysis and non-stationary signal processing.Wavelets have gained popularity in broad range of disciplines like signal/image compression, medical diagnostics, boundary value problems, geophysical signal processing, statistical signal processing,pattern recognition,underwater acoustics etc.In 1993, G. Evangelista introduced the Pitch- synchronous Wavelet Transform, which is particularly suited for pseudo-periodic signal processing.The work presented in this thesis mainly concentrates on two interrelated topics in signal processing,viz. the Wavelet Transform based signal compression and the computation of Discrete Wavelet Transform. A new compression scheme is described in which the Pitch-Synchronous Wavelet Transform technique is combined with the popular linear Predictive Coding method for pseudo-periodic signal processing. Subsequently,A novel Parallel Multiple Subsequence structure is presented for the efficient computation of Wavelet Transform. Case studies also presented to highlight the potential applications.
Resumo:
Multivariate lifetime data arise in various forms including recurrent event data when individuals are followed to observe the sequence of occurrences of a certain type of event; correlated lifetime when an individual is followed for the occurrence of two or more types of events, or when distinct individuals have dependent event times. In most studies there are covariates such as treatments, group indicators, individual characteristics, or environmental conditions, whose relationship to lifetime is of interest. This leads to a consideration of regression models.The well known Cox proportional hazards model and its variations, using the marginal hazard functions employed for the analysis of multivariate survival data in literature are not sufficient to explain the complete dependence structure of pair of lifetimes on the covariate vector. Motivated by this, in Chapter 2, we introduced a bivariate proportional hazards model using vector hazard function of Johnson and Kotz (1975), in which the covariates under study have different effect on two components of the vector hazard function. The proposed model is useful in real life situations to study the dependence structure of pair of lifetimes on the covariate vector . The well known partial likelihood approach is used for the estimation of parameter vectors. We then introduced a bivariate proportional hazards model for gap times of recurrent events in Chapter 3. The model incorporates both marginal and joint dependence of the distribution of gap times on the covariate vector . In many fields of application, mean residual life function is considered superior concept than the hazard function. Motivated by this, in Chapter 4, we considered a new semi-parametric model, bivariate proportional mean residual life time model, to assess the relationship between mean residual life and covariates for gap time of recurrent events. The counting process approach is used for the inference procedures of the gap time of recurrent events. In many survival studies, the distribution of lifetime may depend on the distribution of censoring time. In Chapter 5, we introduced a proportional hazards model for duration times and developed inference procedures under dependent (informative) censoring. In Chapter 6, we introduced a bivariate proportional hazards model for competing risks data under right censoring. The asymptotic properties of the estimators of the parameters of different models developed in previous chapters, were studied. The proposed models were applied to various real life situations.
Resumo:
This thesis investigated the potential use of Linear Predictive Coding in speech communication applications. A Modified Block Adaptive Predictive Coder is developed, which reduces the computational burden and complexity without sacrificing the speech quality, as compared to the conventional adaptive predictive coding (APC) system. For this, changes in the evaluation methods have been evolved. This method is as different from the usual APC system in that the difference between the true and the predicted value is not transmitted. This allows the replacement of the high order predictor in the transmitter section of a predictive coding system, by a simple delay unit, which makes the transmitter quite simple. Also, the block length used in the processing of the speech signal is adjusted relative to the pitch period of the signal being processed rather than choosing a constant length as hitherto done by other researchers. The efficiency of the newly proposed coder has been supported with results of computer simulation using real speech data. Three methods for voiced/unvoiced/silent/transition classification have been presented. The first one is based on energy, zerocrossing rate and the periodicity of the waveform. The second method uses normalised correlation coefficient as the main parameter, while the third method utilizes a pitch-dependent correlation factor. The third algorithm which gives the minimum error probability has been chosen in a later chapter to design the modified coder The thesis also presents a comparazive study beh-cm the autocorrelation and the covariance methods used in the evaluaiicn of the predictor parameters. It has been proved that the azztocorrelation method is superior to the covariance method with respect to the filter stabf-it)‘ and also in an SNR sense, though the increase in gain is only small. The Modified Block Adaptive Coder applies a switching from pitch precitzion to spectrum prediction when the speech segment changes from a voiced or transition region to an unvoiced region. The experiments cont;-:ted in coding, transmission and simulation, used speech samples from .\£=_‘ajr2_1a:r1 and English phrases. Proposal for a speaker reecgnifion syste: and a phoneme identification system has also been outlized towards the end of the thesis.
Resumo:
Speech signals are one of the most important means of communication among the human beings. In this paper, a comparative study of two feature extraction techniques are carried out for recognizing speaker independent spoken isolated words. First one is a hybrid approach with Linear Predictive Coding (LPC) and Artificial Neural Networks (ANN) and the second method uses a combination of Wavelet Packet Decomposition (WPD) and Artificial Neural Networks. Voice signals are sampled directly from the microphone and then they are processed using these two techniques for extracting the features. Words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. Training, testing and pattern recognition are performed using Artificial Neural Networks. Back propagation method is used to train the ANN. The proposed method is implemented for 50 speakers uttering 20 isolated words each. Both the methods produce good recognition accuracy. But Wavelet Packet Decomposition is found to be more suitable for recognizing speech because of its multi-resolution characteristics and efficient time frequency localizations
Resumo:
An improved color video super-resolution technique using kernel regression and fuzzy enhancement is presented in this paper. A high resolution frame is computed from a set of low resolution video frames by kernel regression using an adaptive Gaussian kernel. A fuzzy smoothing filter is proposed to enhance the regression output. The proposed technique is a low cost software solution to resolution enhancement of color video in multimedia applications. The performance of the proposed technique is evaluated using several color videos and it is found to be better than other techniques in producing high quality high resolution color videos
Resumo:
In our study we use a kernel based classification technique, Support Vector Machine Regression for predicting the Melting Point of Drug – like compounds in terms of Topological Descriptors, Topological Charge Indices, Connectivity Indices and 2D Auto Correlations. The Machine Learning model was designed, trained and tested using a dataset of 100 compounds and it was found that an SVMReg model with RBF Kernel could predict the Melting Point with a mean absolute error 15.5854 and Root Mean Squared Error 19.7576
Resumo:
We study the relation between support vector machines (SVMs) for regression (SVMR) and SVM for classification (SVMC). We show that for a given SVMC solution there exists a SVMR solution which is equivalent for a certain choice of the parameters. In particular our result is that for $epsilon$ sufficiently close to one, the optimal hyperplane and threshold for the SVMC problem with regularization parameter C_c are equal to (1-epsilon)^{- 1} times the optimal hyperplane and threshold for SVMR with regularization parameter C_r = (1-epsilon)C_c. A direct consequence of this result is that SVMC can be seen as a special case of SVMR.