878 resultados para overall extraction curves
Resumo:
Faculty of Marine Sciences,Cochin University of Science and Technology
Resumo:
Magnetic Resonance Imaging (MRI) is a multi sequence medical imaging technique in which stacks of images are acquired with different tissue contrasts. Simultaneous observation and quantitative analysis of normal brain tissues and small abnormalities from these large numbers of different sequences is a great challenge in clinical applications. Multispectral MRI analysis can simplify the job considerably by combining unlimited number of available co-registered sequences in a single suite. However, poor performance of the multispectral system with conventional image classification and segmentation methods makes it inappropriate for clinical analysis. Recent works in multispectral brain MRI analysis attempted to resolve this issue by improved feature extraction approaches, such as transform based methods, fuzzy approaches, algebraic techniques and so forth. Transform based feature extraction methods like Independent Component Analysis (ICA) and its extensions have been effectively used in recent studies to improve the performance of multispectral brain MRI analysis. However, these global transforms were found to be inefficient and inconsistent in identifying less frequently occurred features like small lesions, from large amount of MR data. The present thesis focuses on the improvement in ICA based feature extraction techniques to enhance the performance of multispectral brain MRI analysis. Methods using spectral clustering and wavelet transforms are proposed to resolve the inefficiency of ICA in identifying small abnormalities, and problems due to ICA over-completeness. Effectiveness of the new methods in brain tissue classification and segmentation is confirmed by a detailed quantitative and qualitative analysis with synthetic and clinical, normal and abnormal, data. In comparison to conventional classification techniques, proposed algorithms provide better performance in classification of normal brain tissues and significant small abnormalities.
Resumo:
Communication is the process of transmitting data across channel. Whenever data is transmitted across a channel, errors are likely to occur. Coding theory is a stream of science that deals with finding efficient ways to encode and decode data, so that any likely errors can be detected and corrected. There are many methods to achieve coding and decoding. One among them is Algebraic Geometric Codes that can be constructed from curves. Cryptography is the science ol‘ security of transmitting messages from a sender to a receiver. The objective is to encrypt message in such a way that an eavesdropper would not be able to read it. A eryptosystem is a set of algorithms for encrypting and decrypting for the purpose of the process of encryption and decryption. Public key eryptosystem such as RSA and DSS are traditionally being prel‘en‘ec| for the purpose of secure communication through the channel. llowever Elliptic Curve eryptosystem have become a viable altemative since they provide greater security and also because of their usage of key of smaller length compared to other existing crypto systems. Elliptic curve cryptography is based on group of points on an elliptic curve over a finite field. This thesis deals with Algebraic Geometric codes and their relation to Cryptography using elliptic curves. Here Goppa codes are used and the curves used are elliptic curve over a finite field. We are relating Algebraic Geometric code to Cryptography by developing a cryptographic algorithm, which includes the process of encryption and decryption of messages. We are making use of fundamental properties of Elliptic curve cryptography for generating the algorithm and is used here to relate both.
Resumo:
Speech signals are one of the most important means of communication among the human beings. In this paper, a comparative study of two feature extraction techniques are carried out for recognizing speaker independent spoken isolated words. First one is a hybrid approach with Linear Predictive Coding (LPC) and Artificial Neural Networks (ANN) and the second method uses a combination of Wavelet Packet Decomposition (WPD) and Artificial Neural Networks. Voice signals are sampled directly from the microphone and then they are processed using these two techniques for extracting the features. Words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. Training, testing and pattern recognition are performed using Artificial Neural Networks. Back propagation method is used to train the ANN. The proposed method is implemented for 50 speakers uttering 20 isolated words each. Both the methods produce good recognition accuracy. But Wavelet Packet Decomposition is found to be more suitable for recognizing speech because of its multi-resolution characteristics and efficient time frequency localizations
Resumo:
Speech processing and consequent recognition are important areas of Digital Signal Processing since speech allows people to communicate more natu-rally and efficiently. In this work, a speech recognition system is developed for re-cognizing digits in Malayalam. For recognizing speech, features are to be ex-tracted from speech and hence feature extraction method plays an important role in speech recognition. Here, front end processing for extracting the features is per-formed using two wavelet based methods namely Discrete Wavelet Transforms (DWT) and Wavelet Packet Decomposition (WPD). Naive Bayes classifier is used for classification purpose. After classification using Naive Bayes classifier, DWT produced a recognition accuracy of 83.5% and WPD produced an accuracy of 80.7%. This paper is intended to devise a new feature extraction method which produces improvements in the recognition accuracy. So, a new method called Dis-crete Wavelet Packet Decomposition (DWPD) is introduced which utilizes the hy-brid features of both DWT and WPD. The performance of this new approach is evaluated and it produced an improved recognition accuracy of 86.2% along with Naive Bayes classifier.
Resumo:
Speech is a natural mode of communication for people and speech recognition is an intensive area of research due to its versatile applications. This paper presents a comparative study of various feature extraction methods based on wavelets for recognizing isolated spoken words. Isolated words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. This work includes two speech recognition methods. First one is a hybrid approach with Discrete Wavelet Transforms and Artificial Neural Networks and the second method uses a combination of Wavelet Packet Decomposition and Artificial Neural Networks. Features are extracted by using Discrete Wavelet Transforms (DWT) and Wavelet Packet Decomposition (WPD). Training, testing and pattern recognition are performed using Artificial Neural Networks (ANN). The proposed method is implemented for 50 speakers uttering 20 isolated words each. The experimental results obtained show the efficiency of these techniques in recognizing speech
Resumo:
Cerebral glioma is the most prevalent primary brain tumor, which are classified broadly into low and high grades according to the degree of malignancy. High grade gliomas are highly malignant which possess a poor prognosis, and the patients survive less than eighteen months after diagnosis. Low grade gliomas are slow growing, least malignant and has better response to therapy. To date, histological grading is used as the standard technique for diagnosis, treatment planning and survival prediction. The main objective of this thesis is to propose novel methods for automatic extraction of low and high grade glioma and other brain tissues, grade detection techniques for glioma using conventional magnetic resonance imaging (MRI) modalities and 3D modelling of glioma from segmented tumor slices in order to assess the growth rate of tumors. Two new methods are developed for extracting tumor regions, of which the second method, named as Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA) can also extract white matter and grey matter from T1 FLAIR an T2 weighted images. The methods were validated with manual Ground truth images, which showed promising results. The developed methods were compared with widely used Fuzzy c-means clustering technique and the robustness of the algorithm with respect to noise is also checked for different noise levels. Image texture can provide significant information on the (ab)normality of tissue, and this thesis expands this idea to tumour texture grading and detection. Based on the thresholds of discriminant first order and gray level cooccurrence matrix based second order statistical features three feature sets were formulated and a decision system was developed for grade detection of glioma from conventional T2 weighted MRI modality.The quantitative performance analysis using ROC curve showed 99.03% accuracy for distinguishing between advanced (aggressive) and early stage (non-aggressive) malignant glioma. The developed brain texture analysis techniques can improve the physician’s ability to detect and analyse pathologies leading to a more reliable diagnosis and treatment of disease. The segmented tumors were also used for volumetric modelling of tumors which can provide an idea of the growth rate of tumor; this can be used for assessing response to therapy and patient prognosis.
Resumo:
Pseudomonas aeruginosa MCCB 123 was grown in a synthetic medium for β-1,3 glucanase production. From the culture filtrate, β-1,3 glucanase was purified with a molecular mass of 45 kDa. The enzyme was a metallozyme as its β-1,3 glucanase activity got inhibited by the metal chelator EDTA. Optimum pH and temperature for β-1,3 glucanase activity on laminarin was found to be 7 and 50 °C respectively. The MCCB 123 β-1,3 glucanase was found to have good lytic action on a wide range of fungal isolates, and hence its application in fungal DNA extraction was evaluated. β-1,3 glucanase purified from the culture supernatant of P. aeruginosa MCCB 123 could be used for the extraction of fungal DNA without the addition of any other reagents generally used. Optimum pH and temperature of enzyme for fungal DNA extraction was found to be 7 and 65 °C respectively. This is the first report on β-1,3 glucanase employed in fungal DNA extraction
Resumo:
Anticipating the increase in video information in future, archiving of news is an important activity in the visual media industry. When the volume of archives increases, it will be difficult for journalists to find the appropriate content using current search tools. This paper provides the details of the study we conducted about the news extraction systems used in different news channels in Kerala. Semantic web technologies can be used effectively since news archiving share many of the characteristics and problems of WWW. Since visual news archives of different media resources follow different metadata standards, interoperability between the resources is also an issue. World Wide Web Consortium has proposed a draft for an ontology framework for media resource which addresses the intercompatiblity issues. In this paper, the w3c proposed framework and its drawbacks is also discussed
Resumo:
Efficient optic disc segmentation is an important task in automated retinal screening. For the same reason optic disc detection is fundamental for medical references and is important for the retinal image analysis application. The most difficult problem of optic disc extraction is to locate the region of interest. Moreover it is a time consuming task. This paper tries to overcome this barrier by presenting an automated method for optic disc boundary extraction using Fuzzy C Means combined with thresholding. The discs determined by the new method agree relatively well with those determined by the experts. The present method has been validated on a data set of 110 colour fundus images from DRION database, and has obtained promising results. The performance of the system is evaluated using the difference in horizontal and vertical diameters of the obtained disc boundary and that of the ground truth obtained from two expert ophthalmologists. For the 25 test images selected from the 110 colour fundus images, the Pearson correlation of the ground truth diameters with the detected diameters by the new method are 0.946 and 0.958 and, 0.94 and 0.974 respectively. From the scatter plot, it is shown that the ground truth and detected diameters have a high positive correlation. This computerized analysis of optic disc is very useful for the diagnosis of retinal diseases
Resumo:
Phosphorus fractionation was employed to find the bioavailability of phosphorus and its seasonal variations in the Panangad region of Cochin estuary, the largest estuarine system in the southwest coast of India. Sequential extraction of the surficial sediments using chelating agents was taken as a tool for this. Phosphate in the water column showed seasonal variations, with high values during the monsoon months, suggesting external runoff. Sediment texture was found to be the main factor influencing the spatial distribution of the geochemical parameters in the study region. Similarly, total phosphorus also showed granulometric dependence and it ranged between 319.54 and 2,938.83 μg/g. Calcium-bound fraction was the main phosphorus pool in the estuary. Significant spatial variations were observed for all bioavailable fractions; iron-bound inorganic phosphorus (5.04–474.24 μg/g), calcium-bound inorganic phosphorus (11.16–826.09 μg/g), and acidsoluble organic phosphorus (22.22–365.86 μg/g). Among the non-bioavailable phosphorus, alkalisoluble organic fraction was the major one (51.92– 1,002.45 μg/g). Residual organic phosphorus was K. R. Renjith (B) · N. Chandramohanakumar · M. M. Joseph Department of Chemical Oceanography, School of Marine Sciences, Cochin University of Science and Technology, Kochi 682016, Kerala, India e-mail: renjithaqua@gmail.com comparatively smaller fraction (3.25–14.64% of total). The sandy and muddy stations showed distinct fractional composition and the speciation study could endorse the overall geochemical character. There could be buffering of phosphorus, suggested by the increase in the percentage of bioavailable fractions during the lean premonsoon period, counteracting the decreases in the external loads. Principal component analysis was employed to find the possible processes influencing the speciation of phosphorus in the study region
Resumo:
This study was undertaken to isolate ligninase-producing white-rot fungi for use in the extraction of fibre from pineapple leaf agriwaste. Fifteen fungal strains were isolated from dead tree trunks and leaf litter. Ligninolytic enzymes (lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac)), were produced by solid-state fermentation (SSF) using pineapple leaves as the substrate. Of the isolated strains, the one showing maximum production of ligninolytic enzymes was identified to be Ganoderma lucidum by 18S ribotyping. Single parameter optimization and response surface methodology of different process variables were carried out for enzyme production. Incubation period, agitation, and Tween-80 were identified to be the most significant variables through Plackett-Burman design. These variables were further optimized by Box-Behnken design. The overall maximum yield of ligninolytic enzymes was achieved by experimental analysis under these optimal conditions. Quantitative lignin analysis of pineapple leaves by Klason lignin method showed significant degradation of lignin by Ganoderma lucidum under SSF
Resumo:
Seit gut zehn Jahren erlebt die Windenergienutzung in Deutschland einen in der Mitte der 80er Jahre nicht für möglich gehaltenen Aufschwung. Anlagenanzahl und installierte Leistung haben in diesem Zeitraum mit durchschnittlichen jährlichen Wachstumsraten von mehr als 30 Prozent zugenommen, die mittlere installierte Leistung pro neu errichteter Anlage stieg dabei um das Zehnfache und die technische Verfügbarkeit der Anlagen liegt mittlerweile bei über 98 Prozent. Mit größer werdenden Anlagen zeigt sich weiterhin ein klarer Trend zu Blattwinkel verstellbaren Konzepten, mit zunehmend drehzahlvariabler Betriebsweise. Vor dem von Vielen für die kommenden drei bis sechs Jahre prognostizierten Einstieg in die großtechnische Offshore- Windenergienutzung mit den damit verbundenen immensen technologischen und strukturellen Herausforderungen erscheint es sinnvoll, einen kritischen Blick zurückzuwerfen auf die 90er Jahre mit den ihnen zugrunde liegenden förderpolitischen Rahmenbedingungen. Dabei soll die Frage beantwortet werden, welchen konkreten Einfluss die staatlichen Forschungs- und Förderprogramme, besonders das "250 MW Wind"-Programm, auf die Entwicklung der Windenergienutzung hatten, das heißt, unter welchen Bedingungen sich bestimmte Techniklinien durchsetzten, wie der Einfluss eines geschützten Marktes durch gesetzlich garantierte Einspeisetarife auf diese Entwicklung zu bewerten ist und schließlich, welche Fehlentwicklungen möglicher Weise eingetreten sind. Dazu wird mit Hilfe von Lernkurven gezeigt, welche Kostenreduktionen insgesamt erzielt wurden, wie hoch die dazu notwendigen staatlichen Finanzmittel waren und welche Schlussfolgerungen daraus für die Zukunft abgeleitet werden können. Die Arbeit soll insgesamt dazu beitragen, die erreichten technischen Entwicklungsschritte vor dem Hintergrund der förderpolitischen Gegebenheiten besser zu verstehen, Chancen für gezielte Änderungen in der Förderpraxis zu ergreifen und Hinweise auf die Ausgestaltung von zukünftigen Forschungsprogrammen und Entwicklungsschwerpunkten im Bereich der Windenergie zu geben, um weitere Kostensenkungspotenziale auszuschöpfen. Dabei wird sich die zukünftige Schwerpunktsetzung in der programmatischen Ausrichtung der Forschung stärker auf die drei wichtigsten Anwendungsfelder für Windenergieanlagen konzentrieren müssen, die großtechnische Offshore- Anwendung, die netzgebundene, dezentrale Energieversorgung sowie auf Windenergieanlagen zur ländlichen Elektrifizierung in autonomen Versorgungssystemen für Schwellen- und Entwicklungsländer.
Resumo:
Total energy SCF calculations were performed for noble gas difluorides in a relativistic procedure and compared with analogous non-relativistic calculations. The discrete variational method with numerical basis functions was used. Rather smooth potential energy curves could be obtained. The theoretical Kr - F and Xe - F bond distances were calculated to be 3.5 a.u. and 3.6 a.u. which should be compared with the experimental values of 3.54 a.u. and 3.7 a.u. Although the dissociation energies are off by a factor of about five it was found that ArF_2 may be a stable molecule. Theoretical ionization energies for the outer levels reproduce the experimental values for KrF_2 and XeF_2 to within 2 eV.
Resumo:
A LCAO-MO (linear combination of atomic orbitals - molecular orbitals) relativistic Dirac-Fock-Slater program is presented, which allows one to calculate accurate total energies for diatomic molecules. Numerical atomic Dirac-Fock-Slater wave functions are used as basis functions. All integrations as well as the solution of the Poisson equation are done fully numerical, with a relative accuracy of 10{^-5} - 10{^-6}. The details of the method as well as first results are presented here.