1000 resultados para nonlinear cryptanalysis
Resumo:
We investigate slow-light pulse propagation in an optical fiber via transient stimulated Brillouin scattering. Space-time evolution of a generating slow-light pulse is numerically calculated by solving three-wave coupled-mode equations between a pump beam, an acoustic wave, and a counterpropagating signal pulse. Our mathematical treatments are applicable to both narrowband and broadband pump cases. We show that the time delay of 85% pulse width can be obtained for a signal pulse of the order of subnanosecond pulse width by using a broadband pump, while the signal pulse is broadened only by 40% of the input signal pulse. The physical origin of the pulse broadening and distortion is explained in terms of the temporal decay of the induced acoustic field. (C) 2009 Optical Society of America
Resumo:
A photoconductive semiconductor switch (PCSS) would work in a nonlinear mode under high biased electrical field. The experimental results of nonlinear critical state have shown that both the biased voltage and the laser energy may have working thresholds to turn on the nonlinear modes. The relation between the biased voltage (aid the laser energy is inverse ratio, i.e., higher biased field need lower laser energy for nonlinear mode, and vise versa. At the nonlinear critical point, the output of PCSS is unstable, as both the linear and nonlinear pulse may occur. As the laser energy and biased field increase, the PCSS would work in the nonlinear mode steadily. (C) 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 56-59 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOT 10.1002/mop.24001
Resumo:
Exact solutions of Maxwell's equations describing the lightwave through 3-layer-structured cylindrical waveguide are obtained and the mode field diameter and nonlinear coefficient of air-core nanowires (ACNWs) are numerically calculated. The simulation results show that ACNWs offer some unique optical properties, such as tight field confining ability and extremely high nonlinearity. At a certain wavelength and air core radius, we optimize the waveguide design to maximize the nonlinear coefficient and minimize the mode field diameter. Our results show that the ACNWs may be powerful potential tools for novel micro-photonic devices in the near future.
Resumo:
This paper studies numerically the dark incoherent spatial solitons propagating in logarithmically saturable nonlinear media by using a coherent density approach and a split-step Fourier approach for the first time. Under odd and even initial conditions, a soliton triplet and a doublet are obtained respectively for given parameters. Simultaneously, coherence properties associated with the soliton triplet and doublet are discussed. In addition, if the values of the parameters are properly chosen, five and four splittings from the input dark incoherent spatial solitons can also form. Lastly, the grayness of the soliton triplet and that of the doublet are studied, in detail.
Resumo:
By optimizing glass composition and using a multistage dehydration process, a ternary 80TeO(2)-10ZnO-10Na(2)O glass is obtained that shows excellent transparency in the wavelength range from 0.38 mu m up to 6.10 mu m. Based on this optimized composition, we report on the fabrication of a single-mode solid-core tellurite glass fiber with large mode area of 103 mu m(2) and low loss of 0.24 similar to 0.7 dB/m at 1550 nm. By using the continuous-wave self-phase modulation method, the non-resonant nonlinear refractive index n(2) and the effective nonlinear parameter gamma of this made tellurite glass fiber were estimated to be 3.8x10(-1)9 m(2)/W and 10.6 W-1.m(-1) at 1550 nm, respectively. (C) 2009 Optical Society of America
Resumo:
使用四波混频测试光子晶体光纤的色散和非线性参数
Resumo:
This paper presents a high speed ROM-less direct digital frequency synthesizer (DDFS) which has a phase resolution of 32 bits and a magnitude resolution of 10 bits. A 10-bit nonlinear segmented DAC is used in place of the ROM look-up table for phase-to-sine amplitude conversion and the linear DAC in a conventional DDFS.The design procedure for implementing the nonlinear DAC is presented. To ensure high speed, current mode logic (CML) is used. The chip is implemented in Chartered 0.35μm COMS technology with active area of 2.0 × 2.5 mm~2 and total power consumption of 400 mW at a single 3.3 V supply voltage. The maximum operating frequency is 850 MHz at room temperature and 1.0 GHz at 0 ℃.
Resumo:
The nonlinear optical properties of Al-doped nc-Si-SiO_2 composite films have been investigated using the time-resolved four-wave mixing technique with a femtosecond laser. The off-resonant third-order nonlinear susceptibility is observed to be 1.0 × 10~(-10) esu at 800nm. The relaxation time of the optical nonlinearity in the films is as short as 60fs. The optical nonlinearity is enhanced due to the quantum confinement of electrons in Si nanocrystals embedded in the SiO_2 films. The enhanced optical nonlinearity does not originate from Al dopant because there are no Al clusters in the films.