866 resultados para modelling and simulation
Resumo:
In this project, we have investigated new ways of modelling and analysis of human vasculature from Medical images. The research was divided in two main areas: cerebral vasculature analysis and coronary arteries modeling. Regarding cerebral vasculature analysis, we have studed cerebral aneurysms, internal carotid and the Circle of Willis (CoW). Aneurysms are abnormal vessel enlargements that can rupture causing important cerebral damages or death. The understanding of this pathology, together with its virtual treatment, and image diagnosis and prognosis, includes identification and detailed measurement of the aneurysms. In this context, we have proposed two automatic aneurysm isolation method, to separate the abnormal part of the vessel from the healthy part, to homogenize and speed-up the processing pipeline usually employed to study this pathology, [Cardenes2011TMI, arrabide2011MedPhys]. The results obtained from both methods have been also compared and validatied in [Cardenes2012MBEC]. A second important task here the analysis of the internal carotid [Bogunovic2011Media] and the automatic labelling of the CoW, Bogunovic2011MICCAI, Bogunovic2012TMI]. The second area of research covers the study of coronary arteries, specially coronary bifurcations because there is where the formation of atherosclerotic plaque is more common, and where the intervention is more challenging. Therefore, we proposed a novel modelling method from Computed Tomography Angiography (CTA) images, combined with Conventional Coronary Angiography (CCA), to obtain realistic vascular models of coronary bifurcations, presented in [Cardenes2011MICCAI], and fully validated including phantom experiments in [Cardene2013MedPhys]. The realistic models obtained from this method are being used to simulate stenting procedures, and to investigate the hemodynamic variables in coronary bifurcations in the works submitted in [Morlachi2012, Chiastra2012]. Additionally, another preliminary work has been done to reconstruct the coronary tree from rotational angiography, and published in [Cardenes2012ISBI].
Resumo:
Evaluating the possible benefits of the introduction of genetically modified (GM) crops must address the issue of consumer resistance as well as the complex regulation that has ensued. In the European Union (EU) this regulation envisions the “co-existence” of GM food with conventional and quality-enhanced products, mandates the labelling and traceability of GM products, and allows only a stringent adventitious presence of GM content in other products. All these elements are brought together within a partial equilibrium model of the EU agricultural food sector. The model comprises conventional, GM and organic food. Demand is modelled in a novel fashion, whereby organic and conventional products are treated as horizontally differentiated but GM products are vertically differentiated (weakly inferior) relative to conventional ones. Supply accounts explicitly for the land constraint at the sector level and for the need for additional resources to produce organic food. Model calibration and simulation allow insights into the qualitative and quantitative effects of the large-scale introduction of GM products in the EU market. We find that the introduction of GM food reduces overall EU welfare, mostly because of the associated need for costly segregation of non-GM products, but the producers of quality-enhanced products actually benefit.
Resumo:
While the theoretical industrial organization literature has long arguedthat excess capacity can be used to deter entry into markets, there islittle empirical evidence that incumbent firms effectively behave in thisway. Bagwell and Ramey (1996) propose a game with a specific sequence ofmoves and partially-recoverable capacity costs in which forward inductionprovides a theoretical rationalization for firm behavior in the field. Weconduct an experiment with a game inspired by their work. In our data theincumbent tends to keep the market, in contrast to what the forwardinduction argument of Bagwell and Ramey would suggest. The results indicatethat players perceive that the first mover has an advantage without havingto pre-commit capacity. In our game, evolution and learning do not driveout this perception. We back these claims with data analysis, atheoretical framework for dynamics, and simulation results.
Resumo:
Interdisciplinary frameworks for studying natural hazards and their temporal trends have an important potential in data generation for risk assessment, land use planning, and therefore the sustainable management of resources. This paper focuses on the adjustments required because of the wide variety of scientific fields involved in the reconstruction and characterisation of flood events for the past 1000 years. The aim of this paper is to describe various methodological aspects of the study of flood events in their historical dimension, including the critical evaluation of old documentary and instrumental sources, flood-event classification and hydraulic modelling, and homogeneity and quality control tests. Standardized criteria for flood classification have been defined and applied to the Isère and Drac floods in France, from 1600 to 1950, and to the Ter, the Llobregat and the Segre floods, in Spain, from 1300 to 1980. The analysis on the Drac and Isère data series from 1600 to the present day showed that extraordinary and catastrophic floods were not distributed uniformly in time. However, the largest floods (general catastrophic floods) were homogeneously distributed in time within the period 1600¿1900. No major flood occurred during the 20th century in these rivers. From 1300 to the present day, no homogeneous behaviour was observed for extraordinary floods in the Spanish rivers. The largest floods were uniformly distributed in time within the period 1300-1900, for the Segre and Ter rivers.
Resumo:
In the scope of the European project Hydroptimet, INTERREG IIIB-MEDOCC programme, limited area model (LAM) intercomparison of intense events that produced many damages to people and territory is performed. As the comparison is limited to single case studies, the work is not meant to provide a measure of the different models' skill, but to identify the key model factors useful to give a good forecast on such a kind of meteorological phenomena. This work focuses on the Spanish flash-flood event, also known as "Montserrat-2000" event. The study is performed using forecast data from seven operational LAMs, placed at partners' disposal via the Hydroptimet ftp site, and observed data from Catalonia rain gauge network. To improve the event analysis, satellite rainfall estimates have been also considered. For statistical evaluation of quantitative precipitation forecasts (QPFs), several non-parametric skill scores based on contingency tables have been used. Furthermore, for each model run it has been possible to identify Catalonia regions affected by misses and false alarms using contingency table elements. Moreover, the standard "eyeball" analysis of forecast and observed precipitation fields has been supported by the use of a state-of-the-art diagnostic method, the contiguous rain area (CRA) analysis. This method allows to quantify the spatial shift forecast error and to identify the error sources that affected each model forecasts. High-resolution modelling and domain size seem to have a key role for providing a skillful forecast. Further work is needed to support this statement, including verification using a wider observational data set.
Resumo:
The impact of charcoal production on soil hydraulic properties, runoff response and erosion susceptibility were studied in both field and simulation experiments. Core and composite samples, from 12 randomly selected sites within the catchment of Kotokosu were taken from the 0-10 cm layer of a charcoal site soil (CSS) and adjacent field soils (AFS). These samples were used to determine saturated hydraulic conductivity (Ksat), bulk density, total porosity, soil texture and color. Infiltration, surface albedo and soil surface temperature were also measured in both CSS and AFS. Measured properties were used as entries in a rainfall runoff simulation experiment on a smooth (5 % slope) plot of 25 x 25 m grids with 10 cm resolutions. Typical rainfall intensities of the study watershed (high, moderate and low) were applied to five different combinations of Ks distributions that could be expected in this landscape. The results showed significantly (p < 0.01) higher flow characteristics of the soil under charcoal kilns (increase of 88 %). Infiltration was enhanced and runoff volume reduced significantly. The results showed runoff reduction of about 37 and 18 %, and runoff coefficient ranging from 0.47-0.75 and 0.04-0.39 or simulation based on high (200 mm h-1) and moderate (100 mm h-1) rainfall events over the CSS and AFS areas, respectively. Other potential impacts of charcoal production on watershed hydrology were described. The results presented, together with watershed measurements, when available, are expected to enhance understanding of the hydrological responses of ecosystems to indiscriminate charcoal production and related activities in this region.
Resumo:
We present a study of the evaporation dynamics of a substance undergoing a coarsening process. The system is modeled by the Cahn-Hilliard equation with absorbing boundaries. We have found that the dynamics, although of a diffusive nature, is much slower than the usual one without coarsening. Analytical and simulation results are in reasonable agreement.
Resumo:
We present a study of the evaporation dynamics of a substance undergoing a coarsening process. The system is modeled by the Cahn-Hilliard equation with absorbing boundaries. We have found that the dynamics, although of a diffusive nature, is much slower than the usual one without coarsening. Analytical and simulation results are in reasonable agreement.
Resumo:
The paper presents the Multiple Kernel Learning (MKL) approach as a modelling and data exploratory tool and applies it to the problem of wind speed mapping. Support Vector Regression (SVR) is used to predict spatial variations of the mean wind speed from terrain features (slopes, terrain curvature, directional derivatives) generated at different spatial scales. Multiple Kernel Learning is applied to learn kernels for individual features and thematic feature subsets, both in the context of feature selection and optimal parameters determination. An empirical study on real-life data confirms the usefulness of MKL as a tool that enhances the interpretability of data-driven models.
Resumo:
The material presented in the these notes covers the sessions Modelling of electromechanical systems, Passive control theory I and Passive control theory II of the II EURON/GEOPLEX Summer School on Modelling and Control of Complex Dynamical Systems.We start with a general description of what an electromechanical system is from a network modelling point of view. Next, a general formulation in terms of PHDS is introduced, and some of the previous electromechanical systems are rewritten in this formalism. Power converters, which are variable structure systems (VSS), can also be given a PHDS form.We conclude the modelling part of these lectures with a rather complex example, showing the interconnection of subsystems from several domains, namely an arrangement to temporally store the surplus energy in a section of a metropolitan transportation system based on dc motor vehicles, using either arrays of supercapacitors or an electric poweredflywheel. The second part of the lectures addresses control of PHD systems. We first present the idea of control as power connection of a plant and a controller. Next we discuss how to circumvent this obstacle and present the basic ideas of Interconnection and Damping Assignment (IDA) passivity-based control of PHD systems.
Resumo:
High-energy charged particles in the van Allen radiation belts and in solar energetic particle events can damage satellites on orbit leading to malfunctions and loss of satellite service. Here we describe some recent results from the SPACECAST project on modelling and forecasting the radiation belts, and modelling solar energetic particle events. We describe the SPACECAST forecasting system that uses physical models that include wave-particle interactions to forecast the electron radiation belts up to 3 h ahead. We show that the forecasts were able to reproduce the >2 MeV electron flux at GOES 13 during the moderate storm of 7-8 October 2012, and the period following a fast solar wind stream on 25-26 October 2012 to within a factor of 5 or so. At lower energies of 10- a few 100 keV we show that the electron flux at geostationary orbit depends sensitively on the high-energy tail of the source distribution near 10 RE on the nightside of the Earth, and that the source is best represented by a kappa distribution. We present a new model of whistler mode chorus determined from multiple satellite measurements which shows that the effects of wave-particle interactions beyond geostationary orbit are likely to be very significant. We also present radial diffusion coefficients calculated from satellite data at geostationary orbit which vary with Kp by over four orders of magnitude. We describe a new automated method to determine the position at the shock that is magnetically connected to the Earth for modelling solar energetic particle events and which takes into account entropy, and predict the form of the mean free path in the foreshock, and particle injection efficiency at the shock from analytical theory which can be tested in simulations.
Resumo:
High-energy charged particles in the van Allen radiation belts and in solar energetic particle events can damage satellites on orbit leading to malfunctions and loss of satellite service. Here we describe some recent results from the SPACECAST project on modelling and forecasting the radiation belts, and modelling solar energetic particle events. We describe the SPACECAST forecasting system that uses physical models that include wave-particle interactions to forecast the electron radiation belts up to 3 h ahead. We show that the forecasts were able to reproduce the >2 MeV electron flux at GOES 13 during the moderate storm of 7-8 October 2012, and the period following a fast solar wind stream on 25-26 October 2012 to within a factor of 5 or so. At lower energies of 10- a few 100 keV we show that the electron flux at geostationary orbit depends sensitively on the high-energy tail of the source distribution near 10 RE on the nightside of the Earth, and that the source is best represented by a kappa distribution. We present a new model of whistler mode chorus determined from multiple satellite measurements which shows that the effects of wave-particle interactions beyond geostationary orbit are likely to be very significant. We also present radial diffusion coefficients calculated from satellite data at geostationary orbit which vary with Kp by over four orders of magnitude. We describe a new automated method to determine the position at the shock that is magnetically connected to the Earth for modelling solar energetic particle events and which takes into account entropy, and predict the form of the mean free path in the foreshock, and particle injection efficiency at the shock from analytical theory which can be tested in simulations.
Resumo:
Koneet voidaan usein jakaa osajärjestelmiin, joita ovat ohjaus- ja säätöjärjestelmät, voimaa tuottavat toimilaitteet ja voiman välittävät mekanismit. Eri osajärjestelmiä on simuloitu tietokoneavusteisesti jo usean vuosikymmenen ajan. Osajärjestelmien yhdistäminen on kuitenkin uudempi ilmiö. Usein esimerkiksi mekanismien mallinnuksessa toimilaitteen tuottama voimaon kuvattu vakiona, tai ajan funktiona muuttuvana voimana. Vastaavasti toimilaitteiden analysoinnissa mekanismin toimilaitteeseen välittämä kuormitus on kuvattu vakiovoimana, tai ajan funktiona työkiertoa kuvaavana kuormituksena. Kun osajärjestelmät on erotettu toisistaan, on niiden välistenvuorovaikutuksien tarkastelu erittäin epätarkkaa. Samoin osajärjestelmän vaikutuksen huomioiminen koko järjestelmän käyttäytymissä on hankalaa. Mekanismien dynamiikan mallinnukseen on kehitetty erityisesti tietokoneille soveltuvia numeerisia mallinnusmenetelmiä. Useimmat menetelmistä perustuvat Lagrangen menetelmään, joka mahdollistaa vapaasti valittaviin koordinaattimuuttujiin perustuvan mallinnuksen. Numeerista ratkaisun mahdollistamiseksi menetelmän avulla muodostettua differentiaali-algebraaliyhtälöryhmää joudutaan muokkaamaan esim. derivoimalla rajoiteyhtälöitä kahteen kertaan. Menetelmän alkuperäisessä numeerisissa ratkaisuissa kaikki mekanismia kuvaavat yleistetyt koordinaatit integroidaan jokaisella aika-askeleella. Tästä perusmenetelmästä johdetuissa menetelmissä riippumattomat yleistetyt koordinaatit joko integroidaan ja riippuvat koordinaatit ratkaistaan rajoiteyhtälöiden perusteella tai yhtälöryhmän kokoa pienennetään esim. käyttämällä nopeus- ja kiihtyvyysanalyyseissä eri kiertymäkoordinaatteja kuin asema-analyysissä. Useimmat integrointimenetelmät on alun perin tarkoitettu differentiaaliyhtälöiden (ODE) ratkaisuunjolloin yhtälöryhmään liitetyt niveliä kuvaavat algebraaliset rajoiteyhtälöt saattavat aiheuttaa ongelmia. Nivelrajoitteiden virheiden korjaus, stabilointi, on erittäin tärkeää mekanismien dynamiikan simuloinnin onnistumisen ja tulosten oikeellisuuden kannalta. Mallinnusmenetelmien johtamisessa käytetyn virtuaalisen työn periaatteen oletuksena nimittäin on, etteivät rajoitevoimat tee työtä, eli rajoitteiden vastaista siirtymää ei tapahdu. Varsinkaan monimutkaisten järjestelmien pidemmissä analyyseissä nivelrajoitteet eivät toteudu tarkasti. Tällöin järjestelmän energiatasapainoei toteudu ja järjestelmään muodostuu virtuaalista energiaa, joka rikkoo virtuaalisen työn periaatetta, Tästä syystä tulokset eivät enää pidäpaikkaansa. Tässä raportissa tarkastellaan erityyppisiä mallinnus- ja ratkaisumenetelmiä, ja vertaillaan niiden toimivuutta yksinkertaisten mekanismien numeerisessa ratkaisussa. Menetelmien toimivuutta tarkastellaan ratkaisun tehokkuuden, nivelrajoitteiden toteutumisen ja energiatasapainon säilymisen kannalta.
Resumo:
The aim of the study is to developa novel robust controller based on sliding mode control technique for the hydraulic servo system with flexible load and for a flexible manipulator with the lift and jib hydraulic actuators. For the purpose of general control design, a dynamic model is derived describing the principle physical behavior for both the hydraulic servo system and the flexible hydraulic manipulator. The mechanism of hydraulic servo systems is described by basic mathematical equations of fluid powersystems and the dynamics of flexible manipulator is modeled by the assumed modemethod. The controller is constructed so as to track desired trajectories in the presence of model imprecision. Experimental and simulation results demonstratethat sliding mode control has benefits which can be used to guarantee stabilityin uncertain systems and improve the system performance and load tolerance.
Resumo:
Existing digital rights management (DRM) systems, initiatives like Creative Commons or research works as some digital rights ontologies provide limited support for content value chains modelling and management. This is becoming a critical issue as content markets start to profit from the possibilities of digital networks and the World Wide Web. The objective is to support the whole copyrighted content value chain across enterprise or business niches boundaries. Our proposal provides a framework that accommodates copyright law and a rich creation model in order to cope with all the creation life cycle stages. The dynamic aspects of value chains are modelled using a hybrid approach that combines ontology-based and rule-based mechanisms. The ontology implementation is based on Web Ontology Language and Description Logic (OWL-DL) reasoners, are directly used for license checking. On the other hand, for more complex aspects of the dynamics of content value chains, rule languages are the choice.