909 resultados para mobile computing, tecnologie web, Tizen
Resumo:
Mobile sensor networks have unique advantages compared with wireless sensor networks. The mobility enables mobile sensors to flexibly reconfigure themselves to meet sensing requirements. In this dissertation, an adaptive sampling method for mobile sensor networks is presented. Based on the consideration of sensing resource constraints, computing abilities, and onboard energy limitations, the adaptive sampling method follows a down sampling scheme, which could reduce the total number of measurements, and lower sampling cost. Compressive sensing is a recently developed down sampling method, using a small number of randomly distributed measurements for signal reconstruction. However, original signals cannot be reconstructed using condensed measurements, as addressed by Shannon Sampling Theory. Measurements have to be processed under a sparse domain, and convex optimization methods should be applied to reconstruct original signals. Restricted isometry property would guarantee signals can be recovered with little information loss. While compressive sensing could effectively lower sampling cost, signal reconstruction is still a great research challenge. Compressive sensing always collects random measurements, whose information amount cannot be determined in prior. If each measurement is optimized as the most informative measurement, the reconstruction performance can perform much better. Based on the above consideration, this dissertation is focusing on an adaptive sampling approach, which could find the most informative measurements in unknown environments and reconstruct original signals. With mobile sensors, measurements are collect sequentially, giving the chance to uniquely optimize each of them. When mobile sensors are about to collect a new measurement from the surrounding environments, existing information is shared among networked sensors so that each sensor would have a global view of the entire environment. Shared information is analyzed under Haar Wavelet domain, under which most nature signals appear sparse, to infer a model of the environments. The most informative measurements can be determined by optimizing model parameters. As a result, all the measurements collected by the mobile sensor network are the most informative measurements given existing information, and a perfect reconstruction would be expected. To present the adaptive sampling method, a series of research issues will be addressed, including measurement evaluation and collection, mobile network establishment, data fusion, sensor motion, signal reconstruction, etc. Two dimensional scalar field will be reconstructed using the method proposed. Both single mobile sensors and mobile sensor networks will be deployed in the environment, and reconstruction performance of both will be compared.In addition, a particular mobile sensor, a quadrotor UAV is developed, so that the adaptive sampling method can be used in three dimensional scenarios.
Resumo:
To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments.
Resumo:
Con il termine "Mobile-Health" si intende l’uso di tecnologie mobili in ambito medico-sanitario. Questa tesi si propone di fornire un quadro generale di come i sistemi di Mobile-Health possano aiutare nell'assistenza e nel monitoraggio della gravidanza. Attraverso l'analisi delle ricerche effettuate in questo campo, e lo studio dei sistemi attualmente utilizzati in ambito ospedaliero, si cerca di valutare se effettivamente questo tipo di tecnologie può fornire un contributo significativo nell'assistere le donne incinte. Viene trattato il tema del Self-Management che riguarda appunto l'auto-gestione della propria condizione di salute attraverso l’uso di tecnologie mobili. Vengono introdotti problemi e complicazioni della gravidanza e i corrispettivi trattamenti. Si analizzano studi e ricerche che riguardano dispositivi e software per le donne incinte, compreso il tema delle “app mediche”. Infine, grazie al contributo delle dottoresse Iliana Colonna e Marina Carfagna (coordinatrici ostetriche negli ospedali di Rimini e Cesena), si presenta una panoramica sull’attuale uso di tecnologie nei reparti ospedalieri di ostetricia.
Resumo:
I fattori biometrici per il riconoscimento sono oggi uno degli elementi simbolo dell'innovazione, in questa tesi propongo un'implementazione web del Riconoscimento Facciale il cui scopo è quello di mostrare quali siano le possibili applicazioni in ambito bancario di questa tecnologia.
Resumo:
Gli Open Data sono un'utile strumento che sta via via assumendo sempre più importanza nella società; in questa tesi vedremo la loro utilità attraverso la realizzazione di un'applicazione mobile, che utilizza questi dati per fornire informazioni circa lo stato ambientale dell'aria e dei pollini in Emilia Romagna, sfruttando i dataset forniti da un noto ente pubblico (Arpa Emilia Romagna). Tale applicazione mobile si basa su un Web Service che gestisce i vari passaggi dei dati e li immagazzina in un database Mongodb. Tale Web Service è stato creato per essere a sua volta messo a disposizione di programmatori, enti o persone comuni per studi e sviluppi futuri in tale ambito.
Resumo:
In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.
Resumo:
Recent advancements in the area of nanotechnology have brought us into a new age of pervasive computing devices. These computing devices grow ever smaller and are being used in ways which were unimaginable before. Recent interest in developing a precise indoor positioning system, as opposed to existing outdoor systems, has given way to much research heading into the area. The use of these small computing devices offers many conveniences for usage in indoor positioning systems. This thesis will deal with using small computing devices Raspberry Pi’s to enable and improve position estimation of mobile devices within closed spaces. The newly patented Orthogonal Perfect DFT Golay coding sequences will be used inside this scenario, and their positioning properties will be tested. After that, testing and comparisons with other coding sequences will be done.
Resumo:
Effective and efficient implementation of intelligent and/or recently emerged networked manufacturing systems require an enterprise level integration. The networked manufacturing offers several advantages in the current competitive atmosphere by way to reduce, by shortening manufacturing cycle time and maintaining the production flexibility thereby achieving several feasible process plans. The first step in this direction is to integrate manufacturing functions such as process planning and scheduling for multi-jobs in a network based manufacturing system. It is difficult to determine a proper plan that meets conflicting objectives simultaneously. This paper describes a mobile-agent based negotiation approach to integrate manufacturing functions in a distributed manner; and its fundamental framework and functions are presented. Moreover, ontology has been constructed by using the Protégé software which possesses the flexibility to convert knowledge into Extensible Markup Language (XML) schema of Web Ontology Language (OWL) documents. The generated XML schemas have been used to transfer information throughout the manufacturing network for the intelligent interoperable integration of product data models and manufacturing resources. To validate the feasibility of the proposed approach, an illustrative example along with varied production environments that includes production demand fluctuations is presented and compared the proposed approach performance and its effectiveness with evolutionary algorithm based Hybrid Dynamic-DNA (HD-DNA) algorithm. The results show that the proposed scheme is very effective and reasonably acceptable for integration of manufacturing functions.
Resumo:
RESUMO - O Huanglongbing (HLB ou Greening) é a doença mais importante e destrutiva da citricultura mundial. Presente de forma endêmica nos continentes asiático e africano há várias décadas, essa doença foi constatada no Brasil em 2004, sendo transmitida pelo psilídeo Diaphorina citri e causada por bactérias de floema Candidatus Liberibacter spp. Para auxiliar o estudo da doença, foram desenvolvidos modelos matemáticos para avaliação da propagação do HLB Citros. Este trabalho tem por objetivo a criação de um sistema para execução via web de um destes modelos, permitindo aos profissionais de diversas formações, em especial os das áreas biológicas, que são os especialistas do domínio em estudo, acesso rápido aos resultados fornecidos pelo modelo matemático, eliminando ainda a necessidade de conhecimento prévio em alguma linguagem de programação ou de métodos de resolução de equações diferenciais. O sistema foi completamente implementado em R, tendo sido o pacote deSolve usado para solução do modelo matemático e o framework web Shiny para a interface com usuário, sendo todos open source.
Resumo:
With the advent of 5G, several novel network paradigms and technologies have been proposed to fulfil the key requirements imposed. Flexibility, efficiency and scalability, along with sustainability and convenience for expenditure have to be addressed in targeting these brand new needs. Among novel paradigms introduced in the scientific literature in recent years, a constant and increasing interest lies in the use of unmanned aerial vehicles (UAVs) as network nodes supporting the legacy terrestrial network for service provision. Their inherent features of moving nodes make them able to be deployed on-demand in real-time. Which, in practical terms, means having them acting as a base station (BS) when and where there is the highest need. This thesis investigates then the potential role of UAV-aided mobile radio networks, in order to validate the concept of adding an aerial network component and assess the system performance, from early to later stages of its deployment. This study is intended for 5G and beyond systems, to allow time for the technology to mature. Since advantages can be manyfold, the aerial network component is considered at the network layer under several aspects, from connectivity to radio resource management. A particular emphasis is given to trajectory design, because of the efficiency and flexibility it potentially adds to the infrastructure. Two different frameworks have been proposed, to take into account both a re-adaptable heuristic and an optimal solution. Moreover, diverse use cases are taken under analysis, from mobile broadband to machine and vehicular communications. The thesis aim is thus to discuss the potential and advantages of UAV-aided systems from a broad perspective. Results demonstrate that the technology has good prospects for diverse scenarios with a few arrangements.
Resumo:
Safe collaboration between a robot and human operator forms a critical requirement for deploying a robotic system into a manufacturing and testing environment. In this dissertation, the safety requirement for is developed and implemented for the navigation system of the mobile manipulators. A methodology for human-robot co-existence through a 3d scene analysis is also investigated. The proposed approach exploits the advance in computing capability by relying on graphic processing units (GPU’s) for volumetric predictive human-robot contact checking. Apart from guaranteeing safety of operators, human-robot collaboration is also fundamental when cooperative activities are required, as in appliance test automation floor. To achieve this, a generalized hierarchical task controller scheme for collision avoidance is developed. This allows the robotic arm to safely approach and inspect the interior of the appliance without collision during the testing procedure. The unpredictable presence of the operators also forms dynamic obstacle that changes very fast, thereby requiring a quick reaction from the robot side. In this aspect, a GPU-accelarated distance field is computed to speed up reaction time to avoid collision between human operator and the robot. An automated appliance testing also involves robotized laundry loading and unloading during life cycle testing. This task involves Laundry detection, grasp pose estimation and manipulation in a container, inside the drum and during recovery grasping. A wrinkle and blob detection algorithms for grasp pose estimation are developed and grasp poses are calculated along the wrinkle and blobs to efficiently perform grasping task. By ranking the estimated laundry grasp poses according to a predefined cost function, the robotic arm attempt to grasp poses that are more comfortable from the robot kinematic side as well as collision free on the appliance side. This is achieved through appliance detection and full-model registration and collision free trajectory execution using online collision avoidance.
Resumo:
Con il termine "crowdsensing" si intende una tecnica in cui un folto gruppo di individui aventi dispositivi mobili acquisiscono e condividono dati di natura diversa in maniera collettiva, al fine di estrarre informazioni utili. Il concetto di Mobile Crowdsensing è molto recente e derivante dalle ultime innovazioni tecnologiche in materia di connettività online e cattura di dati di vario genere; pertanto non si trova attualmente una vera e propria applicazione in campo reale, la modellazione solo teorica e fin troppo specifica pone un limite alla conoscenza di un ambito che può rivelarsi molto utile ai fini di ricerca. YouCrowd è un piattaforma web che va ad implementare un sistema di crowdsourcing completo, in grado di leggere dati dai numerosi sensori di uno smartphone e condividerli, al fine di ottenere una remunerazione per gli utenti che completano una campagna. La web application vede la sua implementazione di base supportata da NodeJS e si configura come una piattaforma dinamica che varia la propria interfaccia con l'utente in base alle richieste di dati da parte degli administrators. Il test di YouCrowd ha coinvolto un buon numero di partecipanti più o meno esperti nell'utilizzo degli strumenti informatici, rivelando delle buone prestazioni in relazione alla difficoltà del task e alle prestazioni del device in test.
Resumo:
Modern scientific discoveries are driven by an unsatisfiable demand for computational resources. High-Performance Computing (HPC) systems are an aggregation of computing power to deliver considerably higher performance than one typical desktop computer can provide, to solve large problems in science, engineering, or business. An HPC room in the datacenter is a complex controlled environment that hosts thousands of computing nodes that consume electrical power in the range of megawatts, which gets completely transformed into heat. Although a datacenter contains sophisticated cooling systems, our studies indicate quantitative evidence of thermal bottlenecks in real-life production workload, showing the presence of significant spatial and temporal thermal and power heterogeneity. Therefore minor thermal issues/anomalies can potentially start a chain of events that leads to an unbalance between the amount of heat generated by the computing nodes and the heat removed by the cooling system originating thermal hazards. Although thermal anomalies are rare events, anomaly detection/prediction in time is vital to avoid IT and facility equipment damage and outage of the datacenter, with severe societal and business losses. For this reason, automated approaches to detect thermal anomalies in datacenters have considerable potential. This thesis analyzed and characterized the power and thermal characteristics of a Tier0 datacenter (CINECA) during production and under abnormal thermal conditions. Then, a Deep Learning (DL)-powered thermal hazard prediction framework is proposed. The proposed models are validated against real thermal hazard events reported for the studied HPC cluster while in production. This thesis is the first empirical study of thermal anomaly detection and prediction techniques of a real large-scale HPC system to the best of my knowledge. For this thesis, I used a large-scale dataset, monitoring data of tens of thousands of sensors for around 24 months with a data collection rate of around 20 seconds.
Resumo:
Embedding intelligence in extreme edge devices allows distilling raw data acquired from sensors into actionable information, directly on IoT end-nodes. This computing paradigm, in which end-nodes no longer depend entirely on the Cloud, offers undeniable benefits, driving a large research area (TinyML) to deploy leading Machine Learning (ML) algorithms on micro-controller class of devices. To fit the limited memory storage capability of these tiny platforms, full-precision Deep Neural Networks (DNNs) are compressed by representing their data down to byte and sub-byte formats, in the integer domain. However, the current generation of micro-controller systems can barely cope with the computing requirements of QNNs. This thesis tackles the challenge from many perspectives, presenting solutions both at software and hardware levels, exploiting parallelism, heterogeneity and software programmability to guarantee high flexibility and high energy-performance proportionality. The first contribution, PULP-NN, is an optimized software computing library for QNN inference on parallel ultra-low-power (PULP) clusters of RISC-V processors, showing one order of magnitude improvements in performance and energy efficiency, compared to current State-of-the-Art (SoA) STM32 micro-controller systems (MCUs) based on ARM Cortex-M cores. The second contribution is XpulpNN, a set of RISC-V domain specific instruction set architecture (ISA) extensions to deal with sub-byte integer arithmetic computation. The solution, including the ISA extensions and the micro-architecture to support them, achieves energy efficiency comparable with dedicated DNN accelerators and surpasses the efficiency of SoA ARM Cortex-M based MCUs, such as the low-end STM32M4 and the high-end STM32H7 devices, by up to three orders of magnitude. To overcome the Von Neumann bottleneck while guaranteeing the highest flexibility, the final contribution integrates an Analog In-Memory Computing accelerator into the PULP cluster, creating a fully programmable heterogeneous fabric that demonstrates end-to-end inference capabilities of SoA MobileNetV2 models, showing two orders of magnitude performance improvements over current SoA analog/digital solutions.
Resumo:
In the last few years, mobile wireless technology has gone through a revolutionary change. Web-enabled devices have evolved into essential tools for communication, information, and entertainment. The fifth generation (5G) of mobile communication networks is envisioned to be a key enabler of the next upcoming wireless revolution. Millimeter wave (mmWave) spectrum and the evolution of Cloud Radio Access Networks (C-RANs) are two of the main technological innovations of 5G wireless systems and beyond. Because of the current spectrum-shortage condition, mmWaves have been proposed for the next generation systems, providing larger bandwidths and higher data rates. Consequently, new radio channel models are being developed. Recently, deterministic ray-based models such as Ray-Tracing (RT) are getting more attractive thanks to their frequency-agility and reliable predictions. A modern RT software has been calibrated and used to analyze the mmWave channel. Knowledge of the electromagnetic properties of materials is therefore essential. Hence, an item-level electromagnetic characterization of common construction materials has been successfully achieved to obtain information about their complex relative permittivity. A complete tuning of the RT tool has been performed against indoor and outdoor measurement campaigns at 27 and 38 GHz, setting the basis for the future development of advanced beamforming techniques which rely on deterministic propagation models (as RT). C-RAN is a novel mobile network architecture which can address a number of challenges that network operators are facing in order to meet the continuous customers’ demands. C-RANs have already been adopted in advanced 4G deployments; however, there are still some issues to deal with, especially considering the bandwidth requirements set by the forthcoming 5G systems. Open RAN specifications have been proposed to overcome the new 5G challenges set on C-RAN architectures, including synchronization aspects. In this work it is described an FPGA implementation of the Synchronization Plane for an O-RAN-compliant radio system.