951 resultados para kaolinite, intercalation, Raman microscopy, infrared spectroscopy, X-ray powder diffraction, thermal analysis
Resumo:
The X-rays induced during interaction of highly charged argon ions with a beryllium surface are reported. It is found that the K shell X-ray yield of single particle during interaction of hydrogen-like argon ions was 3.6 x 10(-3), which is five orders more than that of heliumlike argon ions. Moreover, due to the screening the 2s electron, no K X-ray was emitted during interaction of lithium-like argon ions with the beryllium surface. It is also found that the X-ray spectrum induced by Ar17+ interacting with residual gases is very different from that induced by Ar17+ interacting with the surfaces, that provided an experimental evidence for the existence of the hollow atoms below the surface.
Resumo:
We utilize slow highly charged ions of Xeq+ and Pbq+ to irradiate GaN crystal films grown on sapphire substrate, and use X-ray photoelectron spectroscopy to analyze its surface chemical composition and chemical state of the elements. The results show that highly charged ions can etch the sample surface obviously, and the GaN sample irradiated by highly charged ions has N depletion or is Ga rich on its surface. Besides, the relative content of Ga-Ga bond increases as the dose and charge state of the incident ions increase. In addition, the binding energy of Ga 3d(5/2) electrons corresponding to Ga-Ga bond of the irradiated GaN sample is smaller compared with that of the Ga bulk material. This can be attributed to the lattice damage, which shifts the binding energy of inner orbital electrons to the lower end.
Resumo:
利用低速高电荷态Xeq+和Pbq+离子对在蓝宝石衬底上生长的GaN晶体膜样品进行辐照,并利用X射线光电子能谱(XPS)对样品表面化学组成和元素化合态进行了分析.结果表明,高电荷态离子对样品表面有显著的刻蚀作用;经高电荷态离子辐照的GaN样品表面氮元素贫乏而镓元素富集;随着入射离子剂量和所携带电荷数的增大,Ga—Ga键相对含量增大;辐照后,GaN样品中Ga—Ga键对应的Ga3d5/2电子的束缚能偏小,晶格损伤使内层轨道电子束缚能向低端方向偏移.
Resumo:
用速度不同的(动能EK=272和357keV,速度v=1.14×106和1.72×106m/s)的高电荷态离子40Ar17+分别入射金属Be表面,同时测量这种相互作用过程中产生的近红外光谱线和X射线谱。实验结果表明,在低速范围内(速度小于玻尔速度vBohr=2.19×106m/s),速度较小的40Ar17+离子在到达金属的表面临界距离Rc到进入表面(2—3原子层)的进程中,形成了较多的高激发态Ar原子,其退激辐射较强的光谱线,进而验证了经典过垒模型。
Resumo:
The Ce6-xYxMoO15-delta solid solution with fluorite-related structure have been characterized by differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffraction (XRD), IR, Raman, scanning electric microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) methods. The electric conductivity of samples is investigated by Ac impedance spectroscopy. An essentially pure oxide-ion conductivity of the oxygen-deficiency was observed in pure argon, oxygen and air. The highest oxygen-ion conductivity was found in Ce5.5Y0.5MoO15-delta ranging from 5.9 X 10(-5)(S cm(-1)) at 300 degrees C to 1.3 X 10(-2)(S cm(-1)) at 650 degrees C, respectively. The oxide-ion conductivities remained stable over 80 h-long test at 800 degrees C. These properties suggested that significant oxide-ionic conductivity exists in these materials at moderately elevated temperatures.
Resumo:
The bifunctional comonomer 4-(3-butenyl) styrene was used to synthesize crosslinked polystyrene microspheres (c-PS) with pendant butenyl groups on their surface via suspension copolymerization. Polyethylene chains were grafted onto the surface of c-PS microspheres (PS-g-PE) via ethylene copolymerizing with the pendant butenyl group on the surface of the c-PS microspheres under the catalysis of metallocene catalyst. The composition and morphology of the PS-g-PE microspheres were characterized by means of Fourier transform infrared spectroscopy, Fourier transform Raman spectroscopy, X-ray photoelectron spectroscopy, and field-emission scanning electron microscopy. It is possible to control the content of PE grafted onto the surface of c-PS microspheres by varying the polymerization time or the initial quantity of pendant butenyl group on the surface of c-PS microspheres. Investigation on the morphology and crystallization behavior of grafted PE chains showed that different surface patterns could be formed under various crystallization conditions. Moreover, the crystallization temperature of PE chains grafted on the surface of c-PS microspheres was 6 degrees C higher than that of pure PE. The c-PS microspheres decorated by PE chains had a better compatibility with PE matrix.
Resumo:
The growth kinetics of self-assembled monolayers formed by exposing freshly cleaved mica to octanol solution has been studied by atomic force microscopy (AFM) and Fourier-transform infrared spectroscopy (FTIR). AFM images of samples immersed in octanol for varying exposure times showed that before forming a complete monolayer the octanol molecules aggregated in the form of small islands on the mica surface. With the proceeding of immersion, these islands gradually grew and merged into larger patches. Finally, a close-packed film with uniform appearance and few defects was formed. The thickness of the final film showed 0.8 nm in height, which corresponded to the 40degrees tilt molecular conformation of the octanol monolayer. The growth mechanisms consisted of nucleation, growth, and coalescence of the submonolayer films. The growth process was also confirmed by FTIR. And the surface coverage of the submonolayer islands estimated from AFM images and FTIR spectra as a function of immersion time was quite consistent.
Resumo:
We have employed several techniques, including cyclic voltammetry, UV-Vis spectrometry, small-angle X-ray diffraction, X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy, to characterize the formation processes and interfacial features of ultrathin multilayer films of silicotungstate and a cationic redox polymer on cysteamine-coated Au electrodes self-assembled monolayers. All of these techniques confirm that the multilayer films are built up stepwise as well as uniformly in a layer-by-layer fashion. In particular, the electrochemical impedance spectroscopy is successfully used to monitor the multilayer deposition processes. It has been proved that the electrochemical impedance spectroscopy is a very useful technique in characterization of multilayer films because it provides valuable information about the interfacial impedance features.
Resumo:
The relationship between the chemical displacement of the binding energy and the different chemical environment for 12 organic tin compounds was studied by means of X-ray photoelectron spectronscopy. The different substituents in the compounds have influence on the tin outer electron and Sn-O bond, which was discussed by Xray photoelectron spectroscopy and mass spectrum.
Resumo:
X-ray photoelectron spectroscopy and mass spectrometry have been used to study the ten alpha-Amino Acids. The chemical shiftss of N-1s electron binding energy have been explained by means of the difference in the hydrocarbon group of amino acids. The influence of the hydrocarbon group on NH2 has been disscussed using the XPS and MS results.
Resumo:
The redox potential, surface composition and oxygen species of a series of complex oxides LaMn1-xFexO3 (x=0-1) having perovskite structure (ABO(3)) have been investigated by means of XI'S. The variation of binding energies referring to Mn2p and Fe 2p under different treatment offerred an obvious evidence of redox between Mn and Fe, which could be expressed as Mn4+ + Fe(3-delta)+ Mn(4-delta)+ Fe3+ Feat Through computer fit three kinds of adsorbed oxygen species (O-I, O-II, O-III) have been evaluated based on the XPS spectra of O1s. From the variation of contents of different oxygen species, it could be concluded that. the redox occuring in the surface might be related with the adsorbed oxygen species O-I and O-II, furthermore the possibility of transfer of electron between adsorption site and oxygen was also discussed.
Resumo:
Silicalite-I, ZSM-5, and Fe-ZSM-5 zeolites prepared from two different silicon sources are characterized by UV resonance Raman (UVRR) spectroscopy, X-ray diffraction (XRD), electron spin resonance (ESR), and UV/visible diffuse reflectance spectroscopy (UV/Vis DRS). A new technique for investigating zeolitic structure, UV resonance Raman spectroscopy selectively enhances the Raman bands associated with framework iron atoms incorporated into MFI-type zeolites, and it is very sensitive in identifying the iron atoms in the framework of zeolites, while other techniques such as XRD, ESR, and UV/Vis DRS have failed in uncovering trace amounts of iron atoms in the framework of zeolites. (C) 2000 Academic Press.
Resumo:
Locating hexagonal and cubic phases in boron nitride using wavelength-selective optically detected x-ray absorption spectroscopy, D.A. Evans, A.R. Vearey-Roberts, N.R.J. Poolton Appl Phys Lett 89, (2006) 161107