973 resultados para herbicide selectivity
Resumo:
Sulfadiazine is an antibiotic of the sulfonamide group and is used as a veterinary drug in fish farming. Monitoring it in the tanks is fundamental to control the applied doses and avoid environmental dissemination. Pursuing this goal, we included a novel potentiometric design in a flow-injection assembly. The electrode body was a stainless steel needle veterinary syringe of 0.8-mm inner diameter. A selective membrane of PVC acted as a sensory surface. Its composition, the length of the electrode, and other flow variables were optimized. The best performance was obtained for sensors of 1.5-cm length and a membrane composition of 33% PVC, 66% onitrophenyloctyl ether, 1% ion exchanger, and a small amount of a cationic additive. It exhibited Nernstian slopes of 61.0 mV decade-1 down to 1.0×10-5 mol L-1, with a limit of detection of 3.1×10-6 mol L-1 in flowing media. All necessary pH/ionic strength adjustments were performed online by merging the sample plug with a buffer carrier of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, pH 4.9. The sensor exhibited the advantages of a fast response time (less than 15 s), long operational lifetime (60 days), and good selectivity for chloride, nitrite, acetate, tartrate, citrate, and ascorbate. The flow setup was successfully applied to the analysis of aquaculture waters. The analytical results were validated against those obtained with liquid chromatography–tandem mass spectrometry procedures. The sampling rate was about 84 samples per hour and recoveries ranged from 95.9 to 106.9%.
Resumo:
This work proposes different kind of solid-contact graphite-based electrodes for the selective determination of sulphonamides (SPHs) in pharmaceuticals, biological fluids and aquaculture waters. Sulfadiazine (SDZ) and sulfamethoxazole (SMX) were selected for this purpose for being the most representative compounds of this group. The template molecules were imprinted in sol–gel (ISG) and the resulting material was used as detecting element. This was made by employing it as either a sensing layer or an ionophore of PVC-based membranes and subsequent potentiometric transduction, a strategy never reported before. The corresponding non-imprinted sol–gel (NISG) membranes were used as blank. The effect of plasticizer and kind/charge of ionic lipophilic additive was also studied. The best performance in terms of slope, linearity ranges and signal reproducibility and repeatability was achieved by PVC membranes including a high dielectric constant plasticizer and 15 mg of ISG particles. The corresponding average slope was −51.4 and −52.4 mV/decade, linear responses were 9.0 × 10−6 and 1.7 × 10−5 M, and limits of detection were 0.74 and 1.3 μg/mL for SDZ and for SMX, respectively. Good selectivity with log Kpot < −0.3 was observed for carbonate, chloride, fluoride, hydrogenocarbonate, nitrate, nitrite, phosphate, cyanide, sulfate, borate, persulphate, citrate, tartrate, salicylate, tetracycline, ciprofloxacin, sulphamerazine, sulphatiazole, dopamine, glucose, galactose, cysteine and creatinine. The best sensors were successfully applied to the analysis of real samples with relative errors ranging from −6.8 to + 3.7%.
Resumo:
A new man-tailored biomimetic sensor for Chlorpromazine host-guest interactions and potentiometric transduction is presented. The artificial host was imprinted within methacrylic acid, 2-vinyl pyridine and 2-acrylamido-2-methyl-1-propanesulfonic acid based polymers. Molecularly imprinted particles were dispersed in 2-nitrophenyloctyl ether and entrapped in a poly(vinyl chloride) matrix. Slopes and detection limits ranged 51–67 mV/decade and 0.46–3.9 μg/mL, respectively, in steady state conditions. Sensors were independent from the pH of test solutions within 2.0–5.5. Good selectivity was observed towards oxytetracycline, doxytetracycline, ciprofloxacin, enrofloxacin, nalidixic acid, sulfadiazine, trimethoprim, glycine, hydroxylamine, cysteine and creatinine. Analytical features in flowing media were evaluated on a double-channel manifold, with a carrier solution of 5.0 × 10−2 mol/L phosphate buffer. Near-Nernstian response was observed over the concentration range 1.0 × 10−4 to 1.0 × 10−2 mol/L. Average slopes were about 48 mV/decade. The sensors were successfully applied to field monitoring of CPZ in fish samples, offering the advantages of simplicity, accuracy, automation feasibility and applicability to complex samples.
Resumo:
A 3D-mirror synthetic receptor for ciprofloxacin host–guest interactions and potentiometric transduction is presented. The host cavity was shaped on a polymeric surface assembled with methacrylic acid or 2-vinyl pyridine monomers by radical polymerization. Molecularly imprinted particles were dispersed in 2-nitrophenyl octyl ether and entrapped in a poly(vinyl chloride) matrix. The sensors exhibited a near-Nernstian response in steady state evaluations. Slopes and detection limits ranged from 26.8 to 50.0 mV decade−1 and 1.0 × 10−5 to 2.7 × 10−5 mol L−1, respectively. Good selectivity was observed for trimethoprim, enrofloxacin, tetracycline, cysteine, galactose, hydroxylamine, creatinine, ammonium chloride, sucrose, glucose, sulphamerazine and sulfadiazine. The sensors were successfully applied to the determination of ciprofloxacin concentrations in fish and in pharmaceuticals. The method presented offered the advantages of simplicity, accuracy, applicability to colored and turbid samples and automation feasibility, as well as confirming the use of molecularly imprinted polymers as ionophores for organic ion recognition in potentiometric transduction.
Resumo:
A biomimetic sensor for norfloxacin is presented that is based on host-guest interactions and potentiometric transduction. The artificial host was imprinted into polymers made from methacrylic acid and/or 2-vinyl pyridine. The resulting particles were entrapped in a plasticized poly(vinyl chloride) (PVC) matrix. The sensors exhibit near-Nernstian response in steady state evaluations, and detection limits range from 0.40 to 1.0 μg mL−1, respectively, and are independent of pH values at between 2 and 6, and 8 and 11, respectively. Good selectivity was observed over several potential interferents. In flowing media, the sensors exhibit fast response, a sensitivity of 68.2 mV per decade, a linear range from 79 μM to 2.5 mM, a detection limit of 20 μg mL−1, and a stable baseline. The sensors were successfully applied to field monitoring of norfloxacin in fish samples, biological samples, and pharmaceutical products.
Resumo:
Enrofloxacin (ENR) is an antimicrobial used both in humans and in food producing species. Its control is required in farmed species and their surroundings in order to reduce the prevalence of antibiotic resistant bacteria. Thus, a new biomimetic sensor enrofloxacin is presented. An artificial host was imprinted in specific polymers. These were dispersed in 2-nitrophenyloctyl ether and entrapped in a poly(vinyl chloride) matrix. The potentiometric sensors exhibited a near-Nernstian response. Slopes expressing mV/Δlog([ENR]/M) varied within 48–63. The detection limits ranged from 0.28 to 1.01 µg mL−1. Sensors were independent from the pH of test solutions within 4–7. Good selectivity was observed toward potassium, calcium, barium, magnesium, glycine, ascorbic acid, creatinine, norfloxacin, ciprofloxacin, and tetracycline. In flowing media, the biomimetic sensors presented good reproducibility (RSD of ± 0.7%), fast response, good sensitivity (47 mV/Δlog([ENR]/M), wide linear range (1.0 × 10−5–1.0 × 10−3 M), low detection limit (0.9 µg mL−1), and a stable baseline for a 5 × 10−2 M acetate buffer (pH 4.7) carrier. The sensors were used to analyze fish samples. The method offered the advantages of simplicity, accuracy, and automation feasibility. The sensing membrane may contribute to the development of small devices allowing in vivo measurements of enrofloxacin or parent-drugs.
Resumo:
This work proposes a new biomimetic sensor material for trimethoprim. It is prepared by means of radical polymerization, having trimethylolpropane trimethacrylate as cross-linker, benzoyl peroxide as radicalar iniciator, chloroform as porogenic solvent, and methacrylic acid and 2-vinyl pyridine as monomers. Different percentages of sensor in a range between 1 and 6% were studied. Their behavior was compared to that obtained with ion-exchanger quaternary ammonium salt (additive tetrakis(p-chlorophenyl)borate or tetraphenylborate). The effect of an anionic additive in the sensing membrane was also tested. Trimethoprim sensors with 1% of imprinted particles from methacrylic acid monomers showed the best response in terms of slope (59.7 mV/decade) and detection limit (4.01 × 10− 7 mol/L). These electrodes displayed also a good selectivity towards nickel, manganese aluminium, ammonium, lead, potassium, sodium, iron, chromium, sulfadiazine, alanine, cysteine, tryptophan, valine and glycine. The sensors were not affected by pH changes from 2 to 6. They were successfully applied to the analysis of water from aquaculture.
Resumo:
As a result of the stressful conditions in aquaculture facilities there is a high risk of bacterial infections among cultured fish. Chlortetracycline (CTC) is one of the antimicrobials used to solve this problem. It is a broad spectrum antibacterial active against a wide range of Gram-positive and Gram-negative bacteria. Numerous analytical methods for screening, identifying, and quantifying CTC in animal products have been developed over the years. An alternative and advantageous method should rely on expeditious and efficient procedures providing highly specific and sensitive measurements in food samples. Ion-selective electrodes (ISEs) could meet these criteria. The only ISE reported in literature for this purpose used traditional electro-active materials. A selectivity enhancement could however be achieved after improving the analyte recognition by molecularly imprinted polymers (MIPs). Several MIP particles were synthesized and used as electro-active materials. ISEs based in methacrylic acid monomers showed the best analytical performance according to slope (62.5 and 68.6 mV/decade) and detection limit (4.1 × 10−5 and 5.5 × 10−5 mol L−1). The electrodes displayed good selectivity. The ISEs are not affected by pH changes ranging from 2.5 to 13. The sensors were successfully applied to the analysis of serum, urine and fish samples.
Resumo:
Molecular imprinting is a useful technique for the preparation of functional materials with molecular recognition properties. A Biomimetic Sensor Potentiometric System was developed for assessment of doxycycline (DOX) antibiotic. The molecularly imprinted polymer (MIP) was synthesized by using doxycycline as a template molecule, methacrylic acid (MAA) and/or acrylamide (AA) as a functional monomer and ethylene glycol dimethacrylat (EGDMA) as a cross-linking agent. The sensing elements were fabricated by the inclusion of DOX imprinted polymers in polyvinyl chloride (PVC) matrix. The sensors showed a high selectivity and a sensitive response to the template in aqueous system. Electrochemical evaluation of these sensors under static (batch) mode of operation reveals near-Nernstian response. MIP/MAA membrane sensor was incorporated in flow-through cells and used as detectors for flow injection analysis (FIA) of DOX. The method has the requisite accuracy, sensitivity and precision to assay DOX in tablets and biological fluids.
Resumo:
The indiscriminate use of antibiotics in food-producing animals has received increasing attention as a contributory factor in the international emergence of antibiotic-resistant bacteria (Woodward in Pesticide, veterinary and other residues in food, CRC Press, Boca Raton, 2004). Numerous analytical methods for quantifying antibacterial residues in edible animal products have been developed over years (Woodward in Pesticide, veterinary and other residues in food, CRC Press, Boca Raton, 2004; Botsoglou and Fletouris in Handbook of food analysis, residues and other food component analysis, Marcel Dekker, Ghent, 2004). Being Amoxicillin (AMOX) one of those critical veterinary drugs, efforts have been made to develop simple and expeditious methods for its control in food samples. In literature, only one AMOX-selective electrode has been reported so far. In that work, phosphotungstate:amoxycillinium ion exchanger was used as electroactive material (Shoukry et al. in Electroanalysis 6:914–917, 1994). Designing new materials based on molecularly imprinted polymers (MIPs) which are complementary to the size and charge of AMOX could lead to very selective interactions, thus enhancing the selectivity of the sensing unit. AMOX-selective electrodes used imprinted polymers as electroactive materials having AMOX as target molecule to design a biomimetic imprinted cavity. Poly(vinyl chloride), sensors of methacrylic acid displayed Nernstian slopes (60.7 mV/decade) and low detection limits (2.9 × 10−5 mol/L). The potentiometric responses were not affected by pH within 4–5 and showed good selectivity. The electrodes were applied successfully to the analysis of real samples.
Resumo:
JORNADAS DE ELECTROQUÍMICA E INOVAÇÃO 2013
Resumo:
6th Graduate Student Symposium on Molecular Imprinting
Resumo:
This work presents the development of a low cost sensor device for the diagnosis of breast cancer in point-of-care, made with new synthetic biomimetic materials inside plasticized poly(vinyl chloride), PVC, membranes, for subsequent potentiometric detection. This concept was applied to target a conventional biomarker in breast cancer: Breast Cancer Antigen (CA15-3). The new biomimetic material was obtained by molecularly-imprinted technology. In this, a plastic antibody was obtained by polymerizing around the biomarker that acted as an obstacle to the growth of the polymeric matrix. The imprinted polymer was specifically synthetized by electropolymerization on an FTO conductive glass, by using cyclic voltammetry, including 40 cycles within -0.2 and 1.0 V. The reaction used for the polymerization included monomer (pyrrol, 5.0×10-3 mol/L) and protein (CA15-3, 100U/mL), all prepared in phosphate buffer saline (PBS), with a pH of 7.2 and 1% of ethylene glycol. The biomarker was removed from the imprinted sites by proteolytic action of proteinase K. The biomimetic material was employed in the construction of potentiometric sensors and tested with regard to its affinity and selectivity for binding CA15-3, by checking the analytical performance of the obtained electrodes. For this purpose, the biomimetic material was dispersed in plasticized PVC membranes, including or not a lipophilic ionic additive, and applied on a solid conductive support of graphite. The analytical behaviour was evaluated in buffer and in synthetic serum, with regard to linear range, limit of detection, repeatability, and reproducibility. This antibody-like material was tested in synthetic serum, and good results were obtained. The best devices were able to detect 5 times less CA15-3 than that required in clinical use. Selectivity assays were also performed, showing that the various serum components did not interfere with this biomarker. Overall, the potentiometric-based methods showed several advantages compared to other methods reported in the literature. The analytical process was simple, providing fast responses for a reduced amount of analyte, with low cost and feasible miniaturization. It also allowed the detection of a wide range of concentrations, diminishing the required efforts in previous sample pre-treating stages.
Resumo:
1st ASPIC International Congress
Resumo:
III Jornadas de Electroquímica e Inovação (Electroquímica e Nanomateriais), na Universidade de Trás-os-Montes e Alto Douro, Vila Real, 16 a 17 de Setembro de 2013