892 resultados para helminth infection
Resumo:
Therapies that are safe, effective, and not vulnerable to developing resistance are highly desirable to counteract bacterial infections. Host-directed therapeutics is an antimicrobial approach alternative to conventional antibiotics based on perturbing host pathways subverted by pathogens during their life cycle by using host-directed drugs. In this study, we identified and evaluated the efficacy of a panel of host-directed drugs against respiratory infection by nontypeable Haemophilus influenzae (NTHi). NTHi is an opportunistic pathogen that is an important cause of exacerbation of chronic obstructive pulmonary disease (COPD). We screened for host genes differentially expressed upon infection by the clinical isolate NTHi375 by analyzing cell whole-genome expression profiling and identified a repertoire of host target candidates that were pharmacologically modulated. Based on the proposed relationship between NTHi intracellular location and persistence, we hypothesized that drugs perturbing host pathways used by NTHi to enter epithelial cells could have antimicrobial potential against NTHi infection. Interfering drugs were tested for their effects on bacterial and cellular viability, on NTHi-epithelial cell interplay, and on mouse pulmonary infection. Glucocorticoids and statins lacked in vitro and/or in vivo efficacy. Conversely, the sirtuin-1 activator resveratrol showed a bactericidal effect against NTHi, and the PDE4 inhibitor rolipram showed therapeutic efficacy by lowering NTHi375 counts intracellularly and in the lungs of infected mice. PDE4 inhibition is currently prescribed in COPD, and resveratrol is an attractive geroprotector for COPD treatment. Together, these results expand our knowledge of NTHi-triggered host subversion and frame the antimicrobial potential of rolipram and resveratrol against NTHi respiratory infection.
Resumo:
BACKGROUND: RSV causes considerable morbidity and mortality in children. In cystic fibrosis (CF) viral infections are associated with worsening respiratory symptoms and bacterial colonization. Palivizumab is effective in reducing RSV hospitalization in high risk patient groups. Evidence regarding its effectiveness and safety in CF is inconclusive. CF screening in N. Ireland enabled timely palivizumab prophylaxis, becoming routine in 2002.
OBJECTIVES: To determine the effect of palivizumab on RSV-related hospitalization and compare lung function and bacterial colonization at age 6 years for those born pre- and post-introduction of palivizumab prophylaxis.
METHODS: A retrospective audit was conducted for all patients diagnosed with CF during the period from 1997 to 2007 inclusive. RSV-related hospitalization, time to Pseudomonas aeruginosa (PA) 1st isolate, lung function and growth parameters were recorded. Comparisons were made for outcomes pre- and post-introduction of routine palivizumab administration in 2002. A cost evaluation was also performed.
RESULTS: Ninety-two children were included; 47 pre- and 45 post-palivizumab introduction. The overall RSV-positive hospitalization rate was 13%. The relative risk of RSV infection in palivizumab non-recipients versus recipients was 4.78 (95%CI: 1.1-20.7), P = 0.027. Notably, PA 1st isolate was significantly earlier in the palivizumab recipient cohort versus non-recipient cohort (median 57 vs. 96 months, P < 0.025) with a relative risk of 2.5. Chronic PA infection at 6 years remained low in both groups, with similar lung function and growth parameters. Total costs were calculated at £96,127 ($151,880) for the non-recipient cohort versus £137,954 ($217,967) for the recipient cohort.
CONCLUSION: Palivizumab was effective in reducing RSV-related hospitalization infection in CF patients. Surprisingly, we found a significantly earlier time to 1st isolate of PA in palivizumab recipients which we could not explain by altered or improved diagnostic tests.
Resumo:
Public health risk communication during emergencies should be rapid and accurate in order to allow the audience to take steps to prevent adverse outcomes. Delays to official communications may cause unnecessary anxiety due to uncertainty or inaccurate information circulating within the at-risk group. Modern electronic communications present opportunities for rapid, targeted public health risk communication. We present a case report of a cluster of invasive meningococcal disease in a primary school in which we used the school's mass short message service (SMS) text message system to inform parents and guardians of pupils about the incident, to tell them that chemoprophylaxis would be offered to all pupils and staff, and to advise them when to attend the school to obtain further information and antibiotics. Following notification to public health on a Saturday, an incident team met on Sunday, sent the SMS messages that afternoon, and administered chemoprophyaxis to 93% of 404 pupils on Monday. The use of mass SMS messages enabled rapid communication from an official source and greatly aided the public health response to the cluster.
Resumo:
The Gram-negative bacterial lipopolysaccharide (LPS) is a major component of the outer membrane that plays a key role in host-pathogen interactions with the innate immune system. During infection, bacteria are exposed to a host environment that is typically dominated by inflammatory cells and soluble factors, including antibiotics, which provide cues about regulation of gene expression. Bacterial adaptive changes including modulation of LPS synthesis and structure are a conserved theme in infections, irrespective of the type or bacteria or the site of infection. In general, these changes result in immune system evasion, persisting inflammation, and increased antimicrobial resistance. Here, we review the modifications of LPS structure and biosynthetic pathways that occur upon adaptation of model opportunistic pathogens (Pseudomonas aeruginosa, Burkholderia cepacia complex bacteria, Helicobacter pylori and Salmonella enterica) to chronic infection in respiratory and gastrointestinal sites. We also discuss the molecular mechanisms of these variations and their role in the host-pathogen interaction.
Resumo:
Endothelial dysregulation is central to the pathogenesis of acute Plasmodium falciparum infection. It has been assumed that this dysregulation resolves rapidly after treatment, but this return to normality has been neither demonstrated nor quantified. We therefore measured a panel of plasma endothelial markers acutely and in convalescence in Malawian children with uncomplicated or cerebral malaria. Evidence of persistent endothelial activation and inflammation, indicated by increased plasma levels of soluble intracellular adhesion molecule 1, angiopoetin 2, and C-reactive protein, were observed at 1 month follow-up visits. These vascular changes may represent a previously unrecognized contributor to ongoing malaria-associated morbidity and mortality.
Resumo:
Infection is a leading cause of neonatal morbidity and mortality worldwide. Premature neonates are particularly susceptible to infection because of physiologic immaturity, comorbidity, and extraneous medical interventions. Additionally premature infants are at higher risk of progression to sepsis or severe sepsis, adverse outcomes, and antimicrobial toxicity. Currently initial diagnosis is based upon clinical suspicion accompanied by nonspecific clinical signs and is confirmed upon positive microbiologic culture results several days after institution of empiric therapy. There exists a significant need for rapid, objective, in vitro tests for diagnosis of infection in neonates who are experiencing clinical instability. We used immunoassays multiplexed on microarrays to identify differentially expressed serum proteins in clinically infected and non-infected neonates. Immunoassay arrays were effective for measurement of more than 100 cytokines in small volumes of serum available from neonates. Our analyses revealed significant alterations in levels of eight serum proteins in infected neonates that are associated with inflammation, coagulation, and fibrinolysis. Specifically P- and E-selectins, interleukin 2 soluble receptor alpha, interleukin 18, neutrophil elastase, urokinase plasminogen activator and its cognate receptor, and C-reactive protein were observed at statistically significant increased levels. Multivariate classifiers based on combinations of serum analytes exhibited better diagnostic specificity and sensitivity than single analytes. Multiplexed immunoassays of serum cytokines may have clinical utility as an adjunct for rapid diagnosis of infection and differentiation of etiologic agent in neonates with clinical decompensation.
Resumo:
Diplodia corticola is regarded as the most virulent fungus involved in cork oak decline, being able to infect not only Quercus species (mainly Q. suber and Q. ilex), but also grapevines (Vitis vinifera) and eucalypts (Eucalyptus sp.). This endophytic fungus is also a pathogen whose virulence usually manifests with the onset of plant stress. Considering that the infection normally culminates in host death, there is a growing ecologic and socio-economic concern about D. corticola propagation. The molecular mechanisms of infection are hitherto largely unknown. Accordingly, the aim of this study was to unveil potential virulence effectors implicated in D. corticola infection. This knowledge is fundamental to outline the molecular framework that permits the fungal invasion and proliferation in plant hosts, causing disease. Since the effectors deployed are mostly proteins, we adopted a proteomic approach. We performed in planta pathogenicity tests to select two D. corticola strains with distinct virulence degrees for our studies. Like other filamentous fungi D. corticola secretes protein at low concentrations in vitro in the presence of high levels of polysaccharides, two characteristics that hamper the fungal secretome analysis. Therefore, we first compared several methods of extracellular protein extraction to assess their performance and compatibility with 1D and 2D electrophoretic separation. TCA-Acetone and TCA-phenol protein precipitation were the most efficient methods and the former was adopted for further studies. The proteins were extracted and separated by 2D-PAGE, proteins were digested with trypsin and the resulting peptides were further analysed by MS/MS. Their identification was performed by de novo sequencing and/or MASCOT search. We were able to identify 80 extracellular and 162 intracellular proteins, a milestone for the Botryosphaeriaceae family that contains only one member with the proteome characterized. We also performed an extensive comparative 2D gel analysis to highlight the differentially expressed proteins during the host mimicry. Moreover, we compared the protein profiles of the two strains with different degrees of virulence. In short, we characterized for the first time the secretome and proteome of D. corticola. The obtained results contribute to the elucidation of some aspects of the biology of the fungus. The avirulent strain contains an assortment of proteins that facilitate the adaptation to diverse substrates and the identified proteins suggest that the fungus degrades the host tissues through Fenton reactions. On the other hand, the virulent strain seems to have adapted its secretome to the host characteristics. Furthermore, the results indicate that this strain metabolizes aminobutyric acid, a molecule that might be the triggering factor of the transition from a latent to a pathogenic state. Lastly, the secretome includes potential pathogenicity effectors, such as deuterolysin (peptidase M35) and cerato-platanin, proteins that might play an active role in the phytopathogenic lifestyle of the fungus. Overall, our results suggest that D. corticola has a hemibiotrophic lifestyle, switching from a biotrophic to a necrotrophic interaction after plant physiologic disturbances.This understanding is essential for further development of effective plant protection measures.
Resumo:
Leptospirosis is a widespread but under-reported cause of morbidity and mortality. Global re-emergence of leptospirosis has been associated with the growth of informal urban settlements in which rodents are thought to be important reservoir hosts. Understanding the multi-host epidemiology of leptospirosis is essential to control and prevent disease. A cross-sectional survey of rodents in the Kibera settlement in Nairobi, Kenya was conducted in September–October 2008 to demonstrate the presence of pathogenic leptospires. A real-time quantitative polymerase chain reaction showed that 41 (18.3%) of 224 rodents carried pathogenic leptospires in their kidneys, and sequence data identified Leptospira interrogans and L. kirschneri in this population. Rodents of the genus Mus (37 of 185) were significantly more likely to be positive than those of the genus Rattus (4 of 39; odds ratio = 15.03). Questionnaire data showed frequent contact between humans and rodents in Kibera. This study emphasizes the need to quantify the public health impacts of this neglected disease at this and other urban sites in Africa.
Resumo:
This editorial discusses strengths and limitations of Koch's postulates reviews modifications that have been used over time, and provides a brief introductory comment to the four papers that comprise the themed section herein.
Resumo:
Tese dout., Biologia, Universidade do Algarve, 2008
Resumo:
Several forest species are severely affected by Phytophthora cinnamomi. The contribution of this oomycete to forest decline and dieback has been broadly reported. In particular, it is consensual that it is the causal agent of ink disease in Castanea sativa. It has been associated with the severe decline of Quercus species, namely the Q. suber and Q. ilex dieback in Portugal and Spain, and has been responsible for the infection of numerous native species and crops. This pathogen persists in the soil or on plant material in the form of chlamydospores allowing the infection of living root tissues when environmental conditions are favorable. © Microscopy Society of America 2012.
Resumo:
Tese de doutoramento, Biologia (Microbiologia), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
Tese de doutoramento, Ciências e Tecnologias da Saúde (Microbiologia), Universidade de Lisboa, Faculdade de Medicina, 2014