879 resultados para health technology assessment
Resumo:
Making healthcare comprehensive and more efficient remains a complex challenge. Health Information Technology (HIT) is recognized as an important component of this transformation but few studies describe HIT adoption and it's effect on the bedside experience by physicians, staff and patients. This study applied descriptive statistics and correlation analysis to data from the Patient-Centered Medical Home National Demonstration Project (NDP) of the American Academy of Family Physicians. Thirty-six clinics were followed for 26 months by clinician/staff questionnaires and patient surveys. This study characterizes those clinics as well as staff and patient perspectives on HIT usefulness, the doctor-patient relationship, electronic medical record (EMR) implementation, and computer connections in the practice throughout the study. The Global Practice Experience factor, a composite score related to key components of primary care, was then correlated to clinician and patient perspectives. This study found wide adoption of HIT among NDP practices. Patient perspectives on HIT helpfulness on the doctor-patient showed a suggestive trend that approached statistical significance (p = 0.172). Clinicians and staff noted successful integration of EMR into clinic workflow and their perception of helpfulness to the doctor-patient relationship show a suggestive increase also approaching statistical significance (p=0.06). GPE was correlated with clinician/staff assessment of a helpful doctor-patient relationship midway through the study (R 0.460, p = 0.021) with the remaining time points nearing statistical significance. GPE was also correlated to both patient perspectives of EMR helpfulness in the doctor-patient relationship (R 0.601, p = 0.001) and computer connections (R 0.618, p = 0.0001) at the start of the study. ^
Resumo:
Final report, January 1979.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Historically, the health risk of mycotoxins had been evaluated on the basis of single-chemical and single-exposure pathway scenarios. However, the co-contamination of foodstuffs with these compounds is being reported at an increasing rate and a multiple-exposure scenario for humans and vulnerable population groups as children is urgently needed. Cereals are among the first solid foods eaten by child and thus constitute an important food group of their diet. Few data are available relatively to early stages child´s exposure to mycotoxins through consumption of cereal-based foods. The present study aims to perform the cumulative risk assessment of mycotoxins present in a set of cereal-based foods including breakfast cereals (BC), processed cereal-based foods (PCBF) and biscuits (BT), consumed by children (1 to 3 years old, n=75) from Lisbon region, Portugal. Children food consumption and occurrence of 12 mycotoxins (aflatoxins, ochratoxin A, fumonisins and trichothecenes) in cereal-based foods were combined to estimate the mycotoxin daily intake, using deterministic and probabilistic approaches. Different strategies were used to treat the left censored data. For aflatoxins, as carcinogenic compounds, the margin of exposure (MoE) was calculated as a ratio of BMDL (benchmark dose lower confidence limit) and aflatoxin daily exposure. For the remaining mycotoxins, the output of exposure was compared to the dose reference values (TDI) in order to calculate the hazard quotients (HQ, ratio between exposure and a reference dose). The concentration addition (CA) concept was used for the cumulative risk assessment of multiple mycotoxins. The combined margin of exposure (MoET) and the hazard index (HI) were calculated for aflatoxins and the remaining mycotoxins, respectively. Main results revealed a significant health concern related to aflatoxins and especially aflatoxin M1 exposure according to the MoET and MoE values (below 10000), respectively. HQ and HI values for the remaining mycotoxins were below 1, revealing a low concern from a public health point of view. These are the first results on cumulative risk assessment of multiple mycotoxins present in cereal-based foods consumed by children. Considering the present results, more research studies are needed to provide the governmental regulatory bodies with data to develop an approach that contemplate the human exposure and, particularly, children, to multiple mycotoxins in food. The last issue is particularly important considering the potential synergistic effects that could occur between mycotoxins and its potential impact on human and, mainly, children health.
Resumo:
Some polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in air and have been implicated as carcinogenic materials. Therefore, literature is replete with studies that are focused on their occurrence and profiles in indoor and outdoor air samples. However, because the relative potency of individual PAHs vary widely, health risks associated with the presence of PAHs in a particular environment cannot be extrapolated directly from the concentrations of individual PAHs in that environment. In addition, database on the potency of PAH mixtures is currently limited. In this paper, we have utilized multi-criteria decision making methods (MCDMs) to simultaneously correlate PAH-related health risk in some microenvironments to the concentration levels, ethoxyresorufin-O-deethylase (EROD) activity induction equivalency factors and toxic equivalency factors (TEFs) of PAHs found in those microenvironments. The results showed that the relative risk associated with PAHs in different air samples depends on the index used. Nevertheless, this approach offers a promising tool that could help identify microenvironments of concern and assist the prioritisation of control strategies.
Resumo:
This paper uses dynamic computer simulation techniques to apply a procedure using vibration-based methods for damage assessment in multiple-girder composite bridge. In addition to changes in natural frequencies, this multi-criteria procedure incorporates two methods, namely the modal flexibility and the modal strain energy method. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on modal flexibility and modal strain energy change before and after damage are obtained and used as the indices for the assessment of structural health state. The feasibility and capability of the approach is demonstrated through numerical studies of proposed structure with six damage scenarios. It is concluded that the modal strain energy method is competent for application on multiple-girder composite bridge, as evidenced through the example treated in this paper.
Resumo:
A need for an efficient life care management of building portfolio is becoming increasingly due to increase in aging building infrastructure globally. Appropriate structural engineering practices along with facility management can assist in optimising the remaining life cycle costs for existing public building portfolio. A more precise decision to either demolish, refurbish, do nothing or rebuilt option for any typical building under investigation is needed. In order to achieve this, the status of health of the building needs to be assessed considering several aspects including economic and supply-demand considerations. An investment decision for a refurbishment project competing with other capital works and/or refurbishment projects can be supported by emerging methodology residual service life assessment. This paper discusses challenges in refurbishment projects of public buildings and with a view towards development of residual service life assessment methodology
Resumo:
Many factors have the potential to influence human health. These factors need to be monitored to maintain health. As is the case with human health, construction projects have a number of critical factors that can facilitate a broad evaluation of project health. In order to use these factors as an indication of health, they need to be assessed. This assessment can help to achieve desired outcomes for the project. This paper discusses the approach of assessing Critical Success Factors (CSFs) using Key Performance Indicators (KPIs) to ascertain the immediate health of a construction project. This approach is applicable to all phases of construction projects and many construction procurement methods. KPIs have been benchmarked on the basis of industry standards and historical data. The robustness of the KPIs to assess the immediate health of a project has been validated using Australian and international case studies.
Resumo:
The ability to assess a commercial building for its impact on the environment at the earliest stage of design is a goal which is achievable by integrating several approaches into a single procedure directly from the 3D CAD representation. Such an approach enables building design professionals to make informed decisions on the environmental impact of building and its alternatives during the design development stage instead of at the post-design stage where options become limited. The indicators of interest are those which relate to consumption of resources and energy, contributions to pollution of air, water and soil, and impacts on the health and wellbeing of people in the built environment as a result of constructing and operating buildings. 3D object-oriented CAD files contain a wealth of building information which can be interrogated for details required for analysis of the performance of a design. The quantities of all components in the building can be automatically obtained from the 3D CAD objects and their constituent materials identified to calculate a complete list of the amounts of all building products such as concrete, steel, timber, plastic etc. When this information is combined with a life cycle inventory database, key internationally recognised environmental indicators can be estimated. Such a fully integrated tool known as LCADesign has been created for automated ecoefficiency assessment of commercial buildings direct from 3D CAD. This paper outlines the key features of LCADesign and its application to environmental assessment of commercial buildings.
Resumo:
Buildings consume resources and energy, contribute to pollution of our air, water and soil, impact the health and well-being of populations and constitute an important part of the built environment in which we live. The ability to assess their design with a view to reducing that impact automatically from their 3D CAD representations enables building design professionals to make informed decisions on the environmental impact of building structures. Contemporary 3D object-oriented CAD files contain a wealth of building information. LCADesign has been designed as a fully integrated approach for automated eco-efficiency assessment of commercial buildings direct from 3D CAD. LCADesign accesses the 3D CAD detail through Industry Foundation Classes (IFCs) - the international standard file format for defining architectural and constructional CAD graphic data as 3D real-world objects - to permit construction professionals to interrogate these intelligent drawing objects for analysis of the performance of a design. The automated take-off provides quantities of all building components whose specific production processes, logistics and raw material inputs, where necessary, are identified to calculate a complete list of quantities for all products such as concrete, steel, timber, plastic etc and combines this information with the life cycle inventory database, to estimate key internationally recognised environmental indicators such as CML, EPS and Eco-indicator 99. This paper outlines the key modules of LCADesign and their role in delivering an automated eco-efficiency assessment for commercial buildings.
Resumo:
There is currently a strong focus worldwide on the potential of large-scale Electronic Health Record (EHR) systems to cut costs and improve patient outcomes through increased efficiency. This is accomplished by aggregating medical data from isolated Electronic Medical Record databases maintained by different healthcare providers. Concerns about the privacy and reliability of Electronic Health Records are crucial to healthcare service consumers. Traditional security mechanisms are designed to satisfy confidentiality, integrity, and availability requirements, but they fail to provide a measurement tool for data reliability from a data entry perspective. In this paper, we introduce a Medical Data Reliability Assessment (MDRA) service model to assess the reliability of medical data by evaluating the trustworthiness of its sources, usually the healthcare provider which created the data and the medical practitioner who diagnosed the patient and authorised entry of this data into the patient’s medical record. The result is then expressed by manipulating health record metadata to alert medical practitioners relying on the information to possible reliability problems.
Resumo:
Electronic Health Record (EHR) systems are being introduced to overcome the limitations associated with paper-based and isolated Electronic Medical Record (EMR) systems. This is accomplished by aggregating medical data and consolidating them in one digital repository. Though an EHR system provides obvious functional benefits, there is a growing concern about the privacy and reliability (trustworthiness) of Electronic Health Records. Security requirements such as confidentiality, integrity, and availability can be satisfied by traditional hard security mechanisms. However, measuring data trustworthiness from the perspective of data entry is an issue that cannot be solved with traditional mechanisms, especially since degrees of trust change over time. In this paper, we introduce a Time-variant Medical Data Trustworthiness (TMDT) assessment model to evaluate the trustworthiness of medical data by evaluating the trustworthiness of its sources, namely the healthcare organisation where the data was created and the medical practitioner who diagnosed the patient and authorised entry of this data into the patient’s medical record, with respect to a certain period of time. The result can then be used by the EHR system to manipulate health record metadata to alert medical practitioners relying on the information to possible reliability problems.