954 resultados para eye movements, anisometropia, ocular dominance, visual information processing, reading performance
Resumo:
Current reform initiatives recommend that school geometry teaching and learning include the study of three-dimensional geometric objects and provide students with opportunities to use spatial abilities in mathematical tasks. Two ways of using Geometer's Sketchpad (GSP), a dynamic and interactive computer program, in conjunction with manipulatives enable students to investigate and explore geometric concepts, especially when used in a constructivist setting. Research on spatial abilities has focused on visual reasoning to improve visualization skills. This dissertation investigated the hypothesis that connecting visual and analytic reasoning may better improve students' spatial visualization abilities as compared to instruction that makes little or no use of the connection of the two. Data were collected using the Purdue Spatial Visualization Tests (PSVT) administered as a pretest and posttest to a control and two experimental groups. Sixty-four 10th grade students in three geometry classrooms participated in the study during 6 weeks. Research questions were answered using statistical procedures. An analysis of covariance was used for a quantitative analysis, whereas a description of students' visual-analytic processing strategies was presented using qualitative methods. The quantitative results indicated that there were significant differences in gender, but not in the group factor. However, when analyzing a sub sample of 33 participants with pretest scores below the 50th percentile, males in one of the experimental groups significantly benefited from the treatment. A review of previous research also indicated that students with low visualization skills benefited more than those with higher visualization skills. The qualitative results showed that girls were more sophisticated in their visual-analytic processing strategies to solve three-dimensional tasks. It is recommended that the teaching and learning of spatial visualization start in the middle school, prior to students' more rigorous mathematics exposure in high school. A duration longer than 6 weeks for treatments in similar future research studies is also recommended.
Resumo:
Outsourcing of informational services, a growing trend outside the hospitality industry for several years, is the process of contracting with an outside vendor to take over all or part of a company's information processing needs. The author examines the pros and cons of outscourcing to help the hospitality industry determine if this si a business practice to be considered.
Resumo:
We propose in this work, a new method of conceptual organization of areas involving assistive technology, categorizing them in a logical and simple manner; Furthermore, we also propose the implementation of an interface based on electroculography, able to generate high-level commands, to trigger robotic, computer and electromechanical devices. To validate the eye interface, was developed an electronic circuit associated with a computer program that captured the signals generated by eye movements of users, generating high-level commands, able to trigger an active bracing and many other electromechanical systems. The results showed that it was possible to control many electromechanical systems through only eye movements. The interface is presented as a viable way to perform the proposed task and can be improved in the signals analysis in the the digital level. The diagrammatic model developed, presented as a tool easy to use and understand, providing the conceptual organization needs of assistive technology
Resumo:
Dry eye syndrome is a multifactorial disease of the tear film, resulting from the instability of the lacrimal functional unit that produces volume change, up or tear distribution. In patients in intensive care the cause is enhanced due to various risk factors, such as mechanical ventilation, sedation, lagophthalmos, low temperatures, among others. The study's purpose is to build an assessment tool of Dry Eye Severity in patients in intensive care units based on the systematization of nursing care and their classification systems. The aim of this study is to build an assessment tool of Dry Eye Severity in hospitalized patients in Care Unit Intensiva.Trata is a methodological study conducted in three stages, namely: context analysis, concept analysis, construction of operational definitions and magnitudes of nursing outcome. For the first step we used the methodological framework for Hinds, Chaves and Cypress (1992). For the second step we used the model of Walker and Avant and an integrative review Whitemore seconds, Knalf (2005). This step enabled the identification of the concept of attributes, background and consequent ground and the construction of the settings for the result of nursing severity of dry eye. For the construction of settings and operational magnitudes, it was used Psicometria proposed by Pasquali (1999). As a result of context analysis, visualized from the reflection that the matter should be discussed and that nursing needs to pay attention to the problem of eye injury, so minimizing strategies are created this event with a high prevalence. With the integrative review were located from the crosses 19 853 titles, selected 215, and from the abstracts 96 articles were read in full. From reading 10 were excluded culminating in the sample of 86 articles that were used to analyze the concept and construction of settings. Selected articles were found in greater numbers in the Scopus database (55.82%), performed in the United States (39.53%), and published mainly in the last five years (48.82). Regarding the concept of analysis were identified as antecedents: age, lagophthalmos, environmental factors, medication use, systemic diseases, mechanical ventilation and ophthalmic surgery. As attributes: TBUT <10s, Schimer I test <5 mm in Schimer II test <10mm, reduced osmolarity. As consequential: the ocular surface damage, ocular discomfort, visual instability. The settings were built and added indicators such as: decreased blink mechanism and eyestrain.
Resumo:
The accessory optical system, the pretectal complex, and superior colliculus are important control centers in a variety of eye movement, being extremely necessary for image formation, consequently to visual perception. The accessory optical system is constituted by the nuclei: dorsal terminal nucleus, lateral terminal nucleus, medial terminal nucleus and interstitial nucleus of the posterior superior fasciculus. From a functional point of view they contribute to the image stabilization, participating in the visuomotor activity where all system cells respond to slow eye movements and visual stimuli, which is important for the proper functioning of other visual systems. The pretectal complex comprises a group of nuclei situated in mesodiencephalic transition, they are: anterior pretectal nucleus, posterior pretectal nucleus, medial pretectal nucleus, olivary pretectal nucleus and the nucleus of the optic tract, all retinal projection recipients and functionally are related to the route of the pupillary light reflex and the optokinetic nystagmus. The superior colliculus is an important subcortical visual station formed by layers and has an important functional role in the control of eye movements and head in response to multisensory stimuli. Our aim was to make a mapping of retinal projections that focus on accessory optical system, the nuclei of pretectal complex and the superior colliculus, searching mainly for pretectal complex, better delineation of these structures through the anterograde tracing with the B subunit of cholera toxin (CTb) followed by immunohistochemistry and characterized (measured diameter) synaptic buttons present on the fibers / terminals of the nucleus complex pré-tectal. In our results accessory optical system, including a region which appears to be medial terminal nucleus and superior colliculus, were strongly marked by fibers / terminals immunoreactive CTb as well as pretectal complex in the nucleus: optic tract, olivary pretectal nucleus, anterior pretectal nucleus and posterior pretectal nucleus. According to the characterization of the buttons it was possible to make a better definition of these nucleus.
Resumo:
PURPOSE: To investigate the operation of the Shin-Nippon/Grand Seiko autorefractor and whether higher-order aberrations affect its peripheral refraction measurements. METHODS: Information on instrument design, together with parameters and equations used to obtain refraction, was obtained from a patent. A model eye simulating the operating principles was tested with an optical design program. Effects of induced defocus and astigmatism on the retinal image were used to calibrate the model eye to match the patent equations. Coma and trefoil were added to assess their effects on the image. Peripheral refraction of a physical model eye was measured along four visual field meridians with the Shin-Nippon/Grand Seiko autorefractor SRW-5000 and a Hartmann-Shack aberrometer, and simulated autorefractor peripheral refraction was derived using the Zernike coefficients from the aberrometer. RESULTS: In simulation, the autorefractor's square image was changed in size by defocus, into rectangles or parallelograms by astigmatism, and into irregular shapes by coma and trefoil. In the presence of 1.0 D oblique astigmatism, errors in refraction were proportional to the higher-order aberrations, with up to 0.8 D sphere and 1.5 D cylinder for ±0.6 μm of coma or trefoil coefficients with a 5-mm-diameter pupil. For the physical model eye, refraction with the aberrometer was similar in all visual field meridians, but refraction with the autorefractor changed more quickly along one oblique meridian and less quickly along the other oblique meridian than along the horizontal and vertical meridians. Simulations predicted that higher-order aberrations would affect refraction in oblique meridians, and this was supported by the experimental measurements with the physical model eye. CONCLUSIONS: The autorefractor's peripheral refraction measurements are valid for horizontal and vertical field meridians, but not for oblique field meridians. Similar instruments must be validated before being adopted outside their design scope.
Resumo:
Efficient and effective approaches of dealing with the vast amount of visual information available nowadays are highly sought after. This is particularly the case for image collections, both personal and commercial. Due to the magnitude of these ever expanding image repositories, annotation of all images images is infeasible, and search in such an image collection therefore becomes inherently difficult. Although content-based image retrieval techniques have shown much potential, such approaches also suffer from various problems making it difficult to adopt them in practice. In this paper, we follow a different approach, namely that of browsing image databases for image retrieval. In our Honeycomb Image Browser, large image databases are visualised on a hexagonal lattice with image thumbnails occupying hexagons. Arranged in a space filling manner, visually similar images are located close together enabling large image datasets to be navigated in a hierarchical manner. Various browsing tools are incorporated to allow for interactive exploration of the database. Experimental results confirm that our approach affords efficient image retrieval. © 2010 IEEE.
Resumo:
Pour être performant au plus haut niveau, les athlètes doivent posséder une capacité perceptivo-cognitive supérieure à la moyenne. Cette faculté, reflétée sur le terrain par la vision et l’intelligence de jeu des sportifs, permet d’extraire l’information clé de la scène visuelle. La science du sport a depuis longtemps observé l’expertise perceptivo-cognitive au sein de l’environnement sportif propre aux athlètes. Récemment, des études ont rapporté que l’expertise pouvait également se refléter hors de ce contexte, lors d’activités du quotidien par exemple. De plus, les récentes théories entourant la capacité plastique du cerveau ont amené les chercheurs à développer des outils pour entraîner les capacités perceptivo-cognitives des athlètes afin de les rendre plus performants sur le terrain. Ces méthodes sont la plupart du temps contextuelles à la discipline visée. Cependant, un nouvel outil d’entraînement perceptivo-cognitif, nommé 3-Dimensional Multiple Object Tracking (3D-MOT) et dénué de contexte sportif, a récemment vu le jour et a fait l’objet de nos recherches. Un de nos objectifs visait à mettre en évidence l’expertise perceptivo-cognitive spécifique et non-spécifique chez des athlètes lors d’une même étude. Nous avons évalué la perception du mouvement biologique chez des joueurs de soccer et des non-athlètes dans une salle de réalité virtuelle. Les sportifs étaient systématiquement plus performants en termes d’efficacité et de temps de réaction que les novices pour discriminer la direction du mouvement biologique lors d’un exercice spécifique de soccer (tir) mais également lors d’une action issue du quotidien (marche). Ces résultats signifient que les athlètes possèdent une meilleure capacité à percevoir les mouvements biologiques humains effectués par les autres. La pratique du soccer semble donc conférer un avantage fondamental qui va au-delà des fonctions spécifiques à la pratique d’un sport. Ces découvertes sont à mettre en parallèle avec la performance exceptionnelle des athlètes dans le traitement de scènes visuelles dynamiques et également dénuées de contexte sportif. Des joueurs de soccer ont surpassé des novices dans le test de 3D-MOT qui consiste à suivre des cibles en mouvement et stimule les capacités perceptivo-cognitives. Leur vitesse de suivi visuel ainsi que leur faculté d’apprentissage étaient supérieures. Ces résultats confirmaient des données obtenues précédemment chez des sportifs. Le 3D-MOT est un test de poursuite attentionnelle qui stimule le traitement actif de l’information visuelle dynamique. En particulier, l’attention sélective, dynamique et soutenue ainsi que la mémoire de travail. Cet outil peut être utilisé pour entraîner les fonctions perceptivo-cognitives des athlètes. Des joueurs de soccer entraînés au 3D-MOT durant 30 sessions ont montré une amélioration de la prise de décision dans les passes de 15% sur le terrain comparés à des joueurs de groupes contrôles. Ces données démontrent pour la première fois un transfert perceptivo-cognitif du laboratoire au terrain suivant un entraînement perceptivo-cognitif non-contextuel au sport de l’athlète ciblé. Nos recherches aident à comprendre l’expertise des athlètes par l’approche spécifique et non-spécifique et présentent également les outils d’entraînements perceptivo-cognitifs, en particulier le 3D-MOT, pour améliorer la performance dans le sport de haut-niveau.
Resumo:
Once thought to be predominantly the domain of cortex, multisensory integration has now been found at numerous sub-cortical locations in the auditory pathway. Prominent ascending and descending connection within the pathway suggest that the system may utilize non-auditory activity to help filter incoming sounds as they first enter the ear. Active mechanisms in the periphery, particularly the outer hair cells (OHCs) of the cochlea and middle ear muscles (MEMs), are capable of modulating the sensitivity of other peripheral mechanisms involved in the transduction of sound into the system. Through indirect mechanical coupling of the OHCs and MEMs to the eardrum, motion of these mechanisms can be recorded as acoustic signals in the ear canal. Here, we utilize this recording technique to describe three different experiments that demonstrate novel multisensory interactions occurring at the level of the eardrum. 1) In the first experiment, measurements in humans and monkeys performing a saccadic eye movement task to visual targets indicate that the eardrum oscillates in conjunction with eye movements. The amplitude and phase of the eardrum movement, which we dub the Oscillatory Saccadic Eardrum Associated Response or OSEAR, depended on the direction and horizontal amplitude of the saccade and occurred in the absence of any externally delivered sounds. 2) For the second experiment, we use an audiovisual cueing task to demonstrate a dynamic change to pressure levels in the ear when a sound is expected versus when one is not. Specifically, we observe a drop in frequency power and variability from 0.1 to 4kHz around the time when the sound is expected to occur in contract to a slight increase in power at both lower and higher frequencies. 3) For the third experiment, we show that seeing a speaker say a syllable that is incongruent with the accompanying audio can alter the response patterns of the auditory periphery, particularly during the most relevant moments in the speech stream. These visually influenced changes may contribute to the altered percept of the speech sound. Collectively, we presume that these findings represent the combined effect of OHCs and MEMs acting in tandem in response to various non-auditory signals in order to manipulate the receptive properties of the auditory system. These influences may have a profound, and previously unrecognized, impact on how the auditory system processes sounds from initial sensory transduction all the way to perception and behavior. Moreover, we demonstrate that the entire auditory system is, fundamentally, a multisensory system.
Resumo:
For over 50 years, the Satisfaction of Search effect, and more recently known as the Subsequent Search Miss (SSM) effect, has plagued the field of radiology. Defined as a decrease in additional target accuracy after detecting a prior target in a visual search, SSM errors are known to underlie both real-world search errors (e.g., a radiologist is more likely to miss a tumor if a different tumor was previously detected) and more simplified, lab-based search errors (e.g., an observer is more likely to miss a target ‘T’ if a different target ‘T’ was previously detected). Unfortunately, little was known about this phenomenon’s cognitive underpinnings and SSM errors have proven difficult to eliminate. However, more recently, experimental research has provided evidence for three different theories of SSM errors: the Satisfaction account, the Perceptual Set account, and the Resource Depletion account. A series of studies examined performance in a multiple-target visual search and aimed to provide support for the Resource Depletion account—a first target consumes cognitive resources leaving less available to process additional targets.
To assess a potential mechanism underlying SSM errors, eye movements were recorded in a multiple-target visual search and were used to explore whether a first target may result in an immediate decrease in second-target accuracy, which is known as an attentional blink. To determine whether other known attentional distractions amplified the effects of finding a first target has on second-target detection, distractors within the immediate vicinity of the targets (i.e., clutter) were measured and compared to accuracy for a second target. To better understand which characteristics of attention were impacted by detecting a first target, individual differences within four characteristics of attention were compared to second-target misses in a multiple-target visual search.
The results demonstrated that an attentional blink underlies SSM errors with a decrease in second-target accuracy from 135ms-405ms after detection or re-fixating a first target. The effects of clutter were exacerbated after finding a first target causing a greater decrease in second-target accuracy as clutter increased around a second-target. The attentional characteristics of modulation and vigilance were correlated with second- target misses and suggest that worse attentional modulation and vigilance are predictive of more second-target misses. Taken together, these result are used as the foundation to support a new theory of SSM errors, the Flux Capacitor theory. The Flux Capacitor theory predicts that once a target is found, it is maintained as an attentional template in working memory, which consumes attentional resources that could otherwise be used to detect additional targets. This theory not only proposes why attentional resources are consumed by a first target, but encompasses the research in support of all three SSM theories in an effort to establish a grand, unified theory of SSM errors.
Resumo:
Young infants' learning of words for abstract concepts like 'all gone' and 'eat,' in contrast to their learning of more concrete words like 'apple' and 'shoe,' may follow a relatively protracted developmental course. We examined whether infants know such abstract words. Parents named one of two events shown in side-by-side videos while their 6-16-month-old infants (n=98) watched. On average, infants successfully looked at the named video by 10 months, but not earlier, and infants' looking at the named referent increased robustly at around 14 months. Six-month-olds already understand concrete words in this task (Bergelson & Swingley, 2012). A video-corpus analysis of unscripted mother-infant interaction showed that mothers used the tested abstract words less often in the presence of their referent events than they used concrete words in the presence of their referent objects. We suggest that referential uncertainty in abstract words' teaching conditions may explain the later acquisition of abstract than concrete words, and we discuss the possible role of changes in social-cognitive abilities over the 6-14 month period.
Resumo:
Current state of the art techniques for landmine detection in ground penetrating radar (GPR) utilize statistical methods to identify characteristics of a landmine response. This research makes use of 2-D slices of data in which subsurface landmine responses have hyperbolic shapes. Various methods from the field of visual image processing are adapted to the 2-D GPR data, producing superior landmine detection results. This research goes on to develop a physics-based GPR augmentation method motivated by current advances in visual object detection. This GPR specific augmentation is used to mitigate issues caused by insufficient training sets. This work shows that augmentation improves detection performance under training conditions that are normally very difficult. Finally, this work introduces the use of convolutional neural networks as a method to learn feature extraction parameters. These learned convolutional features outperform hand-designed features in GPR detection tasks. This work presents a number of methods, both borrowed from and motivated by the substantial work in visual image processing. The methods developed and presented in this work show an improvement in overall detection performance and introduce a method to improve the robustness of statistical classification.
Resumo:
Le traitement des émotions joue un rôle essentiel dans les relations interpersonnelles. Des déficits dans la reconnaissance des émotions évoquées par les expressions faciales et vocales ont été démontrés à la suite d’un traumatisme craniocérébral (TCC). Toutefois, la majorité des études n’ont pas différencié les participants selon le niveau de gravité du TCC et n’ont pas évalué certains préalables essentiels au traitement émotionnel, tels que la capacité à percevoir les caractéristiques faciales et vocales, et par le fait même, la capacité à y porter attention. Aucune étude ne s’est intéressée au traitement des émotions évoquées par les expressions musicales, alors que la musique est utilisée comme méthode d’intervention afin de répondre à des besoins de prise en charge comportementale, cognitive ou affective chez des personnes présentant des atteintes neurologiques. Ainsi, on ignore si les effets positifs de l’intervention musicale sont basés sur la préservation de la reconnaissance de certaines catégories d’émotions évoquées par les expressions musicales à la suite d’un TCC. La première étude de cette thèse a évalué la reconnaissance des émotions de base (joie, tristesse, peur) évoquées par les expressions faciales, vocales et musicales chez quarante et un adultes (10 TCC modéré-sévère, 9 TCC léger complexe, 11 TCC léger simple et 11 témoins), à partir de tâches expérimentales et de tâches perceptuelles contrôles. Les résultats suggèrent un déficit de la reconnaissance de la peur évoquée par les expressions faciales à la suite d’un TCC modéré-sévère et d’un TCC léger complexe, comparativement aux personnes avec un TCC léger simple et sans TCC. Le déficit n’est pas expliqué par un trouble perceptuel sous-jacent. Les résultats montrent de plus une préservation de la reconnaissance des émotions évoquées par les expressions vocales et musicales à la suite d’un TCC, indépendamment du niveau de gravité. Enfin, malgré une dissociation observée entre les performances aux tâches de reconnaissance des émotions évoquées par les modalités visuelle et auditive, aucune corrélation n’a été trouvée entre les expressions vocales et musicales. La deuxième étude a mesuré les ondes cérébrales précoces (N1, N170) et plus tardives (N2) de vingt-cinq adultes (10 TCC léger simple, 1 TCC léger complexe, 3 TCC modéré-sévère et 11 témoins), pendant la présentation d’expressions faciales évoquant la peur, la neutralité et la joie. Les résultats suggèrent des altérations dans le traitement attentionnel précoce à la suite d’un TCC, qui amenuisent le traitement ultérieur de la peur évoquée par les expressions faciales. En somme, les conclusions de cette thèse affinent notre compréhension du traitement des émotions évoquées par les expressions faciales, vocales et musicales à la suite d’un TCC selon le niveau de gravité. Les résultats permettent également de mieux saisir les origines des déficits du traitement des émotions évoquées par les expressions faciales à la suite d’un TCC, lesquels semblent secondaires à des altérations attentionnelles précoces. Cette thèse pourrait contribuer au développement éventuel d’interventions axées sur les émotions à la suite d’un TCC.
Resumo:
Moving through a stable, three-dimensional world is a hallmark of our motor and perceptual experience. This stability is constantly being challenged by movements of the eyes and head, inducing retinal blur and retino-spatial misalignments for which the brain must compensate. To do so, the brain must account for eye and head kinematics to transform two-dimensional retinal input into the reference frame necessary for movement or perception. The four studies in this thesis used both computational and psychophysical approaches to investigate several aspects of this reference frame transformation. In the first study, we examined the neural mechanism underlying the visuomotor transformation for smooth pursuit using a feedforward neural network model. After training, the model performed the general, three-dimensional transformation using gain modulation. This gave mechanistic significance to gain modulation observed in cortical pursuit areas while also providing several testable hypotheses for future electrophysiological work. In the second study, we asked how anticipatory pursuit, which is driven by memorized signals, accounts for eye and head geometry using a novel head-roll updating paradigm. We showed that the velocity memory driving anticipatory smooth pursuit relies on retinal signals, but is updated for the current head orientation. In the third study, we asked how forcing retinal motion to undergo a reference frame transformation influences perceptual decision making. We found that simply rolling one's head impairs perceptual decision making in a way captured by stochastic reference frame transformations. In the final study, we asked how torsional shifts of the retinal projection occurring with almost every eye movement influence orientation perception across saccades. We found a pre-saccadic, predictive remapping consistent with maintaining a purely retinal (but spatially inaccurate) orientation perception throughout the movement. Together these studies suggest that, despite their spatial inaccuracy, retinal signals play a surprisingly large role in our seamless visual experience. This work therefore represents a significant advance in our understanding of how the brain performs one of its most fundamental functions.
Resumo:
Symptomatic recovery after acute vestibular neuritis (VN) is variable, with around 50% of patients reporting long term vestibular symptoms; hence, it is essential to identify factors related to poor clinical outcome. Here we investigated whether excessive reliance on visual input for spatial orientation (visual dependence) was associated with long term vestibular symptoms following acute VN. Twenty-eight patients with VN and 25 normal control subjects were included. Patients were enrolled at least 6 months after acute illness. Recovery status was not a criterion for study entry, allowing recruitment of patients with a full range of persistent symptoms. We measured visual dependence with a laptop-based Rod-and-Disk Test and severity of symptoms with the Dizziness Handicap Inventory (DHI). The third of patients showing the worst clinical outcomes (mean DHI score 36–80) had significantly greater visual dependence than normal subjects (6.35° error vs. 3.39° respectively, p = 0.03). Asymptomatic patients and those with minor residual symptoms did not differ from controls. Visual dependence was associated with high levels of persistent vestibular symptoms after acute VN. Over-reliance on visual information for spatial orientation is one characteristic of poorly recovered vestibular neuritis patients. The finding may be clinically useful given that visual dependence may be modified through rehabilitation desensitization techniques.