934 resultados para dynamic systems theory


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We evaluate whether society can adequately be conceptualized as a component of social-ecological systems, given social theory and the current outputs of systems-based research. A mounting critique from the social sciences posits that resilience theory has undertheorized social entities with the concept of social-ecological systems. We trace the way that use of the term has evolved, relating to social science theory. Scientometic and network analysis provide a wide range of empirical data about the origin, growth, and use of this term in academic literature. A content analysis of papers in Ecology and Society demonstrates a marked emphasis in research on institutions, economic incentives, land use, population, social networks, and social learning. These findings are supported by a review of systems science in 18 coastal assessments. This reveals that a systems-based conceptualization tends to limit the kinds of social science research favoring quantitative couplings of social and ecological components and downplaying interpretive traditions of social research. However, the concept of social-ecological systems remains relevant because of the central insights concerning the dynamic coupling between humans and the environment, and its salient critique about the need for multidisciplinary approaches to solve real world problems, drawing on heuristic devices. The findings of this study should lead to more circumspection about whether a systems approach warrants such claims to comprehensiveness. Further methodological advances are required for interdisciplinarity. Yet there is evidence that systems approaches remain highly productive and useful for considering certain social components such as land use and hybrid ecological networks. We clarify advantages and restrictions of utilizing such a concept, and propose a reformulation that supports engagement with wider traditions of research in the social sciences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Power system engineers face a double challenge: to operate electric power systems within narrow stability and security margins, and to maintain high reliability. There is an acute need to better understand the dynamic nature of power systems in order to be prepared for critical situations as they arise. Innovative measurement tools, such as phasor measurement units, can capture not only the slow variation of the voltages and currents but also the underlying oscillations in a power system. Such dynamic data accessibility provides us a strong motivation and a useful tool to explore dynamic-data driven applications in power systems. To fulfill this goal, this dissertation focuses on the following three areas: Developing accurate dynamic load models and updating variable parameters based on the measurement data, applying advanced nonlinear filtering concepts and technologies to real-time identification of power system models, and addressing computational issues by implementing the balanced truncation method. By obtaining more realistic system models, together with timely updated parameters and stochastic influence consideration, we can have an accurate portrait of the ongoing phenomena in an electrical power system. Hence we can further improve state estimation, stability analysis and real-time operation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over the last decade, a new idea challenging the classical self-non-self viewpoint has become popular amongst immunologists. It is called the Danger Theory. In this conceptual paper, we look at this theory from the perspective of Artificial Immune System practitioners. An overview of the Danger Theory is presented with particular emphasis on analogies in the Artificial Immune Systems world. A number of potential application areas are then used to provide a framing for a critical assessment of the concept, and its relevance for Artificial Immune Systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

INTRODUCTION In recent years computer systems have become increasingly complex and consequently the challenge of protecting these systems has become increasingly difficult. Various techniques have been implemented to counteract the misuse of computer systems in the form of firewalls, antivirus software and intrusion detection systems. The complexity of networks and dynamic nature of computer systems leaves current methods with significant room for improvement. Computer scientists have recently drawn inspiration from mechanisms found in biological systems and, in the context of computer security, have focused on the human immune system (HIS). The human immune system provides an example of a robust, distributed system that provides a high level of protection from constant attacks. By examining the precise mechanisms of the human immune system, it is hoped the paradigm will improve the performance of real intrusion detection systems. This paper presents an introduction to recent developments in the field of immunology. It discusses the incorporation of a novel immunological paradigm, Danger Theory, and how this concept is inspiring artificial immune systems (AIS). Applications within the context of computer security are outlined drawing direct reference to the underlying principles of Danger Theory and finally, the current state of intrusion detection systems is discussed and improvements suggested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Permeability of a rock is a dynamic property that varies spatially and temporally. Fractures provide the most efficient channels for fluid flow and thus directly contribute to the permeability of the system. Fractures usually form as a result of a combination of tectonic stresses, gravity (i.e. lithostatic pressure) and fluid pressures. High pressure gradients alone can cause fracturing, the process which is termed as hydrofracturing that can determine caprock (seal) stability or reservoir integrity. Fluids also transport mass and heat, and are responsible for the formation of veins by precipitating minerals within open fractures. Veining (healing) thus directly influences the rock’s permeability. Upon deformation these closed factures (veins) can refracture and the cycle starts again. This fracturing-healing-refacturing cycle is a fundamental part in studying the deformation dynamics and permeability evolution of rock systems. This is generally accompanied by fracture network characterization focusing on network topology that determines network connectivity. Fracture characterization allows to acquire quantitative and qualitative data on fractures and forms an important part of reservoir modeling. This thesis highlights the importance of fracture-healing and veins’ mechanical properties on the deformation dynamics. It shows that permeability varies spatially and temporally, and that healed systems (veined rocks) should not be treated as fractured systems (rocks without veins). Field observations also demonstrate the influence of contrasting mechanical properties, in addition to the complexities of vein microstructures that can form in low-porosity and permeability layered sequences. The thesis also presents graph theory as a characterization method to obtain statistical measures on evolving network connectivity. It also proposes what measures a good reservoir should have to exhibit potentially large permeability and robustness against healing. The results presented in the thesis can have applications for hydrocarbon and geothermal reservoir exploration, mining industry, underground waste disposal, CO2 injection or groundwater modeling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

INTRODUCTION In recent years computer systems have become increasingly complex and consequently the challenge of protecting these systems has become increasingly difficult. Various techniques have been implemented to counteract the misuse of computer systems in the form of firewalls, antivirus software and intrusion detection systems. The complexity of networks and dynamic nature of computer systems leaves current methods with significant room for improvement. Computer scientists have recently drawn inspiration from mechanisms found in biological systems and, in the context of computer security, have focused on the human immune system (HIS). The human immune system provides an example of a robust, distributed system that provides a high level of protection from constant attacks. By examining the precise mechanisms of the human immune system, it is hoped the paradigm will improve the performance of real intrusion detection systems. This paper presents an introduction to recent developments in the field of immunology. It discusses the incorporation of a novel immunological paradigm, Danger Theory, and how this concept is inspiring artificial immune systems (AIS). Applications within the context of computer security are outlined drawing direct reference to the underlying principles of Danger Theory and finally, the current state of intrusion detection systems is discussed and improvements suggested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over the last decade, a new idea challenging the classical self-non-self viewpoint has become popular amongst immunologists. It is called the Danger Theory. In this conceptual paper, we look at this theory from the perspective of Artificial Immune System practitioners. An overview of the Danger Theory is presented with particular emphasis on analogies in the Artificial Immune Systems world. A number of potential application areas are then used to provide a framing for a critical assessment of the concept, and its relevance for Artificial Immune Systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over the last decade, a new idea challenging the classical self-non-self viewpoint has become popular amongst immunologists. It is called the Danger Theory. In this conceptual paper, we look at this theory from the perspective of Artificial Immune System practitioners. An overview of the Danger Theory is presented with particular emphasis on analogies in the Artificial Immune Systems world. A number of potential application areas are then used to provide a framing for a critical assessment of the concept, and its relevance for Artificial Immune Systems. Notes: Uwe Aickelin, Department of Computing, University of Bradford, Bradford, BD7 1DP

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The goal of this article is to build an abstract mathematical theory rather than a computational one of the process of transmission of ideology. The basis of much of the argument is Patten's Environment Theory that characterizes a system with its double environment (input or stimulus and output or response) and the existing interactions among them. Ideological processes are semiotic processes, and if in Patten's theory, the two environments are physical, in this theory ideological processes are physical and semiotic, as are stimulus and response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over the last decade, there has been a trend where water utility companies aim to make water distribution networks more intelligent in order to improve their quality of service, reduce water waste, minimize maintenance costs etc., by incorporating IoT technologies. Current state of the art solutions use expensive power hungry deployments to monitor and transmit water network states periodically in order to detect anomalous behaviors such as water leakage and bursts. However, more than 97% of water network assets are remote away from power and are often in geographically remote underpopulated areas, facts that make current approaches unsuitable for next generation more dynamic adaptive water networks. Battery-driven wireless sensor/actuator based solutions are theoretically the perfect choice to support next generation water distribution. In this paper, we present an end-to-end water leak localization system, which exploits edge processing and enables the use of battery-driven sensor nodes. Our system combines a lightweight edge anomaly detection algorithm based on compression rates and an efficient localization algorithm based on graph theory. The edge anomaly detection and localization elements of the systems produce a timely and accurate localization result and reduce the communication by 99% compared to the traditional periodic communication. We evaluated our schemes by deploying non-intrusive sensors measuring vibrational data on a real-world water test rig that have had controlled leakage and burst scenarios implemented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Data sources are often dispersed geographically in real life applications. Finding a knowledge model may require to join all the data sources and to run a machine learning algorithm on the joint set. We present an alternative based on a Multi Agent System (MAS): an agent mines one data source in order to extract a local theory (knowledge model) and then merges it with the previous MAS theory using a knowledge fusion technique. This way, we obtain a global theory that summarizes the distributed knowledge without spending resources and time in joining data sources. New experiments have been executed including statistical significance analysis. The results show that, as a result of knowledge fusion, the accuracy of initial theories is significantly improved as well as the accuracy of the monolithic solution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, dynamic simulation was used to compare the energy performance of three innovativeHVAC systems: (A) mechanical ventilation with heat recovery (MVHR) and micro heat pump, (B) exhaustventilation with exhaust air-to-water heat pump and ventilation radiators, and (C) exhaust ventilationwith air-to-water heat pump and ventilation radiators, to a reference system: (D) exhaust ventilation withair-to-water heat pump and panel radiators. System A was modelled in MATLAB Simulink and systems Band C in TRNSYS 17. The reference system was modelled in both tools, for comparison between the two.All systems were tested with a model of a renovated single family house for varying U-values, climates,infiltration and ventilation rates.It was found that A was the best system for lower heating demand, while for higher heating demandsystem B would be preferable. System C was better than the reference system, but not as good as A or B.The difference in energy consumption of the reference system was less than 2 kWh/(m2a) betweenSimulink and TRNSYS. This could be explained by the different ways of handling solar gains, but also bythe fact that the TRNSYS systems supplied slightly more than the ideal heating demand.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Describes four waves of Ranganathan’s dynamic theory of classification. Outlines components that distinguish each wave, and porposes ways in which this understanding can inform systems design in the contemporary environment, particularly with regard to interoperability and scheme versioning. Ends with an appeal to better understanding the relationship between structure and semantics in faceted classification schemes and similar indexing languages.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this Thesis a series of numerical models for the evaluation of the seasonal performance of reversible air-to-water heat pump systems coupled to residential and non-residential buildings are presented. The exploitation of the energy saving potential linked to the adoption of heat pumps is a hard task for designers due to the influence on their energy performance of several factors, like the external climate variability, the heat pump modulation capacity, the system control strategy and the hydronic loop configuration. The aim of this work is to study in detail all these aspects. In the first part of this Thesis a series of models which use a temperature class approach for the prediction of the seasonal performance of reversible air source heat pumps are shown. An innovative methodology for the calculation of the seasonal performance of an air-to-water heat pump has been proposed as an extension of the procedure reported by the European standard EN 14825. This methodology can be applied not only to air-to-water single-stage heat pumps (On-off HPs) but also to multi-stage (MSHPs) and inverter-driven units (IDHPs). In the second part, dynamic simulation has been used with the aim to optimize the control systems of the heat pump and of the HVAC plant. A series of dynamic models, developed by means of TRNSYS, are presented to study the behavior of On-off HPs, MSHPs and IDHPs. The main goal of these dynamic simulations is to show the influence of the heat pump control strategies and of the lay-out of the hydronic loop used to couple the heat pump to the emitters on the seasonal performance of the system. A particular focus is given to the modeling of the energy losses linked to on-off cycling.