788 resultados para dINSCY, subspace clustering, data mining, parallelo, distribuito, algoritmo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O atual modelo do setor elétrico brasileiro permite igualdade de condições a todos os agentes e reduz o papel do Estado no setor. Esse modelo obriga as empresas do setor a melhorarem cada vez mais a qualidade de seu produto e, como requisito para este objetivo, devem fazer uso mais efetivo da enorme quantidade de dados operacionais que são armazenados em bancos de dados, provenientes da operação dos seus sistemas elétricos e que tem nas Usinas Hidrelétricas (UHE) a sua principal fonte de geração de energia. Uma das principais ferramentas para gerenciamento dessas usinas são os sistemas de Supervisão, Controle e Aquisição de Dados (Supervisory Control And Data Acquisition - SCADA). Assim, a imensa quantidade de dados acumulados nos bancos de dados pelos sistemas SCADA, muito provavelmente contendo informações relevantes, deve ser tratada para descobrir relações e padrões e assim ajudar na compreensão de muitos aspectos operacionais importantes e avaliar o desempenho dos sistemas elétricos de potência. O processo de Descoberta de Conhecimento em Banco de Dados (Knowledge Discovery in Database - KDD) é o processo de identificar, em grandes conjuntos de dados, padrões que sejam válidos, novos, úteis e compreensíveis, para melhorar o entendimento de um problema ou um procedimento de tomada de decisão. A Mineração de Dados (ou Data Mining) é o passo dentro do KDD que permite extrair informações úteis em grandes bases de dados. Neste cenário, o presente trabalho se propõe a realizar experimentos de mineração de dados nos dados gerados por sistemas SCADA em UHE, a fim de produzir informações relevantes para auxiliar no planejamento, operação, manutenção e segurança das hidrelétricas e na implantação da cultura da mineração de dados aplicada a estas usinas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As técnicas utilizadas para avaliação da segurança estática em sistemas elétricos de potência dependem da execução de grande número de casos de fluxo de carga para diversas topologias e condições operacionais do sistema. Em ambientes de operação de tempo real, esta prática é de difícil realização, principalmente em sistemas de grande porte onde a execução de todos os casos de fluxo de carga que são necessários, exige elevado tempo e esforço computacional mesmo para os recursos atuais disponíveis. Técnicas de mineração de dados como árvore de decisão estão sendo utilizadas nos últimos anos e tem alcançado bons resultados nas aplicações de avaliação da segurança estática e dinâmica de sistemas elétricos de potência. Este trabalho apresenta uma metodologia para avaliação da segurança estática em tempo real de sistemas elétricos de potência utilizando árvore de decisão, onde a partir de simulações off-line de fluxo de carga, executadas via software Anarede (CEPEL), foi gerada uma extensa base de dados rotulada relacionada ao estado do sistema, para diversas condições operacionais. Esta base de dados foi utilizada para indução das árvores de decisão, fornecendo um modelo de predição rápida e precisa que classifica o estado do sistema (seguro ou inseguro) para aplicação em tempo real. Esta metodologia reduz o uso de computadores no ambiente on-line, uma vez que o processamento das árvores de decisão exigem apenas a verificação de algumas instruções lógicas do tipo if-then, de um número reduzido de testes numéricos nos nós binários para definição do valor do atributo que satisfaz as regras, pois estes testes são realizados em quantidade igual ao número de níveis hierárquicos da árvore de decisão, o que normalmente é reduzido. Com este processamento computacional simples, a tarefa de avaliação da segurança estática poderá ser executada em uma fração do tempo necessário para a realização pelos métodos tradicionais mais rápidos. Para validação da metodologia, foi realizado um estudo de caso baseado em um sistema elétrico real, onde para cada contingência classificada como inseguro, uma ação de controle corretivo é executada, a partir da informação da árvore de decisão sobre o atributo crítico que mais afeta a segurança. Os resultados mostraram ser a metodologia uma importante ferramenta para avaliação da segurança estática em tempo real para uso em um centro de operação do sistema.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A contínua incorporação de áreas florestais ao processo produtivo tem acarretado mudanças significativas na paisagem. Na Amazônia, com o avanço da fronteira agrícola, bem como a consolidação de atividades produtivas em determinadas áreas, essas transformações podem ser percebidas com maior evidência. Tal problemática também é observada nas Regiões de Integração - RI do Araguaia e Tapajós, Sudeste e Sudoeste do estado do Pará, respectivamente. Sendo assim, este trabalho tem como objetivo utilizar técnicas de mineração de dados e métricas de paisagem para identificar e analisar de forma automatizada os padrões de paisagens associados aos diferentes tipos de padrões de ocupação humana na Amazônia Legal, utilizando como recorte de análise, as Regiões de Integração do Araguaia e Tapajós no Estado do Pará, com dados de Uso e Cobertura da Terra do Projeto Terra Class para os anos de 2008 e 2010. Abordando, também, metodologias que visam identificar possíveis trajetórias de “evolução” da paisagem, no intuito de delinear recomendações visando uma melhor utilização da terra e dos recursos naturais disponíveis e, na tomada de decisão para a gestão territorial e implementação de políticas públicas. Portanto, verificou-se que a RI do Tapajós apresenta forte dinâmica de uso e cobertura da terra entre os anos de 2008 e 2010, principalmente no que tange as classes de uso da terra. No entanto, tanto para o ano de 2008 quanto para o ano de 2010 pode-se verificar que a Região ainda possui significativa parcela de áreas com cobertura vegetal. Já para a RI do Araguaia a dinâmica de uso e cobertura da terra ocorre de forma diferenciada, com significativa alteração entre as classes durante os anos analisados. No entanto, para a RI do Araguaia assim como para a RI do Tapajós a maior intensidade da dinâmica de uso ocorre entre as classes de pastagem, sendo que para a RI do Araguaia houve relativa perda das áreas com pastagem manejada (pasto limpo) para áreas de pasto com a presença de invasoras (pasto sujo) ou em fase de regeneração. O processo de mapeamento automatizado de Tipologias de Paisagem utilizando o Plugin GeoDMA do Terra View demonstrou-se eficaz e preciso, visto que os resultados alcançados apresentam coerência com a realidade de cada Região de Integração analisada.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A presente dissertação visa apresentar um conjunto de desenvolvimentos, aplicativos e serviços para suporte à operação em tempo real e ao controle preventivo visando garantir à segurança estática e dinâmica de sistemas elétricos de potência. A técnica de mineração de dados conhecida como árvore de decisão foi utilizada tanto para classificar o estado operacional do sistema, bem como para fornecer diretrizes à tomada de ações de controle, necessárias para evitar a degradação da tensão operativa e a instabilidade transitória. Testes preliminares foram realizados utilizando o histórico operacional do SCADA/SAGE do Centro de Operação Regional do Pará da Eletrobrás Eletronorte. Os resultados obtidos validaram completamente o conjunto (protótipo) de aplicativos e serviços, e indicam um grande potencial para a aplicação no ambiente de operação em tempo real.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animal behavioral parameters can be used to assess welfare status in commercial broiler breeders. Behavioral parameters can be monitored with a variety of sensing devices, for instance, the use of video cameras allows comprehensive assessment of animal behavioral expressions. Nevertheless, the development of efficient methods and algorithms to continuously identify and differentiate animal behavior patterns is needed. The objective this study was to provide a methodology to identify hen white broiler breeder behavior using combined techniques of image processing and computer vision. These techniques were applied to differentiate body shapes from a sequence of frames as the birds expressed their behaviors. The method was comprised of four stages: (1) identification of body positions and their relationship with typical behaviors. For this stage, the number of frames required to identify each behavior was determined; (2) collection of image samples, with the isolation of the birds that expressed a behavior of interest; (3) image processing and analysis using a filter developed to separate white birds from the dark background; and finally (4) construction and validation of a behavioral classification tree, using the software tool Weka (model 148). The constructed tree was structured in 8 levels and 27 leaves, and it was validated using two modes: the set training mode with an overall rate of success of 96.7%, and the cross validation mode with an overall rate of success of 70.3%. The results presented here confirmed the feasibility of the method developed to identify white broiler breeder behavior for a particular group of study. Nevertheless, more improvements in the method can be made in order to increase the validation overall rate of success. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

People store data of the most different daily events, to know yourself, detect behaviors, predict events and have an strongly knowledge to take decisions. The growth of the events, results in a large amount of data colected and this data needs to be processed to get value information. This data have a temporal component from the collect process (daily, monthly or annualy) and this need to be consider on the exploration. The exploration based on temporal component can be uni-scale or multi-scale. The data mining goes toward to extract knowledge from large databases and if combined with visualization tools, the data mining can be more effective to detect information. This visualization tools display data and allow user to manipulate and change it by interaction features toward your goal. The user can combine tools and combine the steps of visualization among the tools through messages. This monograph aim to insert interactivity on AdaptaVis architecture model, developed by Shimabukuro (2004), the InfoVis, then extends its ability of exploration and provide a consistent base for the user handle data and extract information

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increase of stakeholders and consequently increase of amount of nancial transaction the study of news investment strategies in the stock market with data mining techniques has been the target of important researches. It allows that great historical data base to be processed and analysed looking for pattern that can be used to take a decision in investments. With the idea of getting pro t more than the real indexs' gain, we propose a strategy method of transactions using rules built by algorithm classi cation. For that, diary historical data of Ibovespa index and Petrobras stocks are organized and processed to nding the most important attribute that act decisively when taking a investment decision.To test the accuracy of proposed rules, a non real portfolio management is created, showing the decisions' performance over the real index and stocks' performance. Following the proposed rules, the results show that the strategy of investment give me back a high return that Stock market's return. The exclusive characteristics of algorithms maximize the gain inside the analysed time allowing to determine the techniques' return and the number of the days necessary to double the initial investment. The best classi er applied on the time series and its use on the propose investments strategy will demand 104 days to double the initial capital

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciências Cartográficas - FCT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)