902 resultados para cycle
Resumo:
Resumen basado en el de la publicación
Resumo:
Mamá y su bebé gaviota siguen el viaje épico de una gota de agua desde la formación de las nubes hasta la caída de la gota. Proporciona una primera introducción al ciclo del agua y se acompaña de distintas actividades para realizar en clase y que ayudan a los niños a comprenderlo. Por su tamaño, es idóneo para debates en grupo y lectura compartida. Al final hay un pequeño glosario.
Resumo:
La importancia del ahorro de agua sigue siendo una cuestión fundamental para el futuro. Este titulo ofrece un enfoque nuevo para ayudar a los lectores a realizar sus propios experimentos y actividades para aprender más sobre el agua: sus propiedades, su ciclo, agua potable, aguas superficiales y subterráneas. Tiene glosario, bibliografía y direcciones web.
Resumo:
The ongoing reforms, which were introduced under the Bologna Process and have already been extended outside of Europe , are a unique opportunity for reinforcing and structuring a common platform of understanding among members, based on the full time undergraduate courses in ( Urbanismo) Urban and Regional Planning. The training programs at this 1st cycle level, will obviously continue with the 2nd and 3rd cycles (Bachelor's Degree, Master's Degree and PhD Degree or 3+2+3 years). The training programs at this full time 1st cycle level, can also becomes the framework of understanding for the development of research in the urban fields at national and international levels.
Resumo:
In response to the often-heard accusation that “austerity is killing growth in Europe”, Daniel Gros asks in this new Commentary: “What austerity?” Looking at the entire budget cycle, he finds that the picture of austerity killing growth simply does not hold up. Since the bursting of the bubble in 2007, Gros reports that the economic performance of the US has been very similar to that of the euro area: GDP per capita is today about 2% below the 2007 level on both sides of the Atlantic; and the unemployment rate has increased by about the same amount as well: it increased by 3% both in the US and the euro area. Thus, he concludes that over a five-year period, the US has not done any better than the euro area although it has used a much larger dose of fiscal expansion.
Resumo:
Reanalysis data obtained from data assimilation are increasingly used for diagnostic studies of the general circulation of the atmosphere, for the validation of modelling experiments and for estimating energy and water fluxes between the Earth surface and the atmosphere. Because fluxes are not specifically observed, but determined by the data assimilation system, they are not only influenced by the utilized observations but also by model physics and dynamics and by the assimilation method. In order to better understand the relative importance of humidity observations for the determination of the hydrological cycle, in this paper we describe an assimilation experiment using the ERA40 reanalysis system where all humidity data have been excluded from the observational data base. The surprising result is that the model, driven by the time evolution of wind, temperature and surface pressure, is able to almost completely reconstitute the large-scale hydrological cycle of the control assimilation without the use of any humidity data. In addition, analysis of the individual weather systems in the extratropics and tropics using an objective feature tracking analysis indicates that the humidity data have very little impact on these systems. We include a discussion of these results and possible consequences for the way moisture information is assimilated, as well as the potential consequences for the design of observing systems for climate monitoring. It is further suggested, with support from a simple assimilation study with another model, that model physics and dynamics play a decisive role for the hydrological cycle, stressing the need to better understand these aspects of model parametrization. .
Resumo:
The representation of the diurnal cycle in the Hadley Centre climate model is evaluated using simulations of the infrared radiances observed by Meteosat 7. In both the window and water vapour channels, the standard version of the model with 19 levels produces a good simulation of the geographical distributions of the mean radiances and of the amplitude of the diurnal cycle. Increasing the vertical resolution to 30 levels leads to further improvements in the mean fields. The timing of the maximum and minimum radiances reveals significant model errors, however, which are sensitive to the frequency with which the radiation scheme is called. In most regions, these errors are consistent with well documented errors in the timing of convective precipitation, which peaks before noon in the model, in contrast to the observed peak in the late afternoon or evening. When the radiation scheme is called every model time step (half an hour), as opposed to every three hours in the standard version, the timing of the minimum radiance is improved for convective regions over central Africa, due to the creation of upper-level layer-cloud by detrainment from the convection scheme, which persists well after the convection itself has dissipated. However, this produces a decoupling between the timing of the diurnal cycles of precipitation and window channel radiance. The possibility is raised that a similar decoupling may occur in reality and the implications of this for the retrieval of the diurnal cycle of precipitation from infrared radiances are discussed.
Resumo:
An intensification of the hydrological cycle is a likely consequence of global warming. But changes in the hydrological cycle could affect sea-surface temperature by modifying diffusive ocean heat transports. We investigate this mechanism by studying a coupled general circulation model sensitivity experiment in which the hydrological cycle is artificially amplified. We find that the amplified hydrological cycle depresses sea-surface temperature by enhancing ocean heat uptake in low latitudes. We estimate that a 10% increase in the hydrological cycle will contribute a basin-scale sea-surface temperature decrease of around 0.1°C away from high latitudes, with larger decreases locally. We conclude that an intensified hydrological cycle is likely to contribute a weak negative feedback to anthropogenic climate change.