734 resultados para coastal settings
Resumo:
Little is known about the vegetation and fire history of Sardinia, and especially the long-term history of the thermo-Mediterranean belt that encompasses its entire coastal lowlands. A new sedimentary record from a coastal lake based on pollen, spores, macrofossils and microscopic charcoal analysis is used to reconstruct the vegetation and fire history in north-eastern Sardinia. During the mid-Holocene (c. 8,100–5,300 cal bp), the vegetation around Stagno di Sa Curcurica was characterised by dense Erica scoparia and E. arborea stands, which were favoured by high fire activity. Fire incidence declined and evergreen broadleaved forests of Quercus ilex expanded at the beginning of the late Holocene. We relate the observed vegetation and fire dynamics to climatic change, specifically moister and cooler summers and drier and milder winters after 5,300 cal bp. Agricultural activities occurred since the Neolithic and intensified after c. 7,000 cal bp. Around 2,750 cal bp, a further decline of fire incidence and Erica communities occurred, while Quercus ilex expanded and open-land communities became more abundant. This vegetation shift coincided with the historically documented beginning of Phoenician period, which was followed by Punic and Roman civilizations in Sardinia. The vegetational change at around 2,750 cal bp was possibly advantaged by a further shift to moister and cooler summers and drier and milder winters. Triggers for climate changes at 5,300 and 2,750 cal bp may have been gradual, orbitally-induced changes in summer and winter insolation, as well as centennial-scale atmospheric reorganizations. Open evergreen broadleaved forests persisted until the twentieth century, when they were partly substituted by widespread artificial pine plantations. Our results imply that highly flammable Erica vegetation, as reconstructed for the mid-Holocene, could re-emerge as a dominant vegetation type due to increasing drought and fire, as anticipated under global change conditions.
Resumo:
BACKGROUND In resource-limited settings, clinical parameters, including body weight changes, are used to monitor clinical response. Therefore, we studied body weight changes in patients on antiretroviral treatment (ART) in different regions of the world. METHODS Data were extracted from the "International Epidemiologic Databases to Evaluate AIDS," a network of ART programmes that prospectively collects routine clinical data. Adults on ART from the Southern, East, West, and Central African and the Asia-Pacific regions were selected from the database if baseline data on body weight, gender, ART regimen, and CD4 count were available. Body weight change over the first 2 years and the probability of body weight loss in the second year were modeled using linear mixed models and logistic regression, respectively. RESULTS Data from 205,571 patients were analyzed. Mean adjusted body weight change in the first 12 months was higher in patients started on tenofovir and/or efavirenz; in patients from Central, West, and East Africa, in men, and in patients with a poorer clinical status. In the second year of ART, it was greater in patients initiated on tenofovir and/or nevirapine, and for patients not on stavudine, in women, in Southern Africa and in patients with a better clinical status at initiation. Stavudine in the initial regimen was associated with a lower mean adjusted body weight change and with weight loss in the second treatment year. CONCLUSIONS Different ART regimens have different effects on body weight change. Body weight loss after 1 year of treatment in patients on stavudine might be associated with lipoatrophy.
Resumo:
BACKGROUND HIV-1 RNA viral load (VL) testing is recommended to monitor antiretroviral therapy (ART) but not available in many resource-limited settings. We developed and validated CD4-based risk charts to guide targeted VL testing. METHODS We modeled the probability of virologic failure up to 5 years of ART based on current and baseline CD4 counts, developed decision rules for targeted VL testing of 10%, 20%, or 40% of patients in 7 cohorts of patients starting ART in South Africa, and plotted cutoffs for VL testing on colour-coded risk charts. We assessed the accuracy of risk chart-guided VL testing to detect virologic failure in validation cohorts from South Africa, Zambia, and the Asia-Pacific. RESULTS In total, 31,450 adult patients were included in the derivation and 25,294 patients in the validation cohorts. Positive predictive values increased with the percentage of patients tested: from 79% (10% tested) to 98% (40% tested) in the South African cohort, from 64% to 93% in the Zambian cohort, and from 73% to 96% in the Asia-Pacific cohort. Corresponding increases in sensitivity were from 35% to 68% in South Africa, from 55% to 82% in Zambia, and from 37% to 71% in Asia-Pacific. The area under the receiver operating curve increased from 0.75 to 0.91 in South Africa, from 0.76 to 0.91 in Zambia, and from 0.77 to 0.92 in Asia-Pacific. CONCLUSIONS CD4-based risk charts with optimal cutoffs for targeted VL testing maybe useful to monitor ART in settings where VL capacity is limited.
Resumo:
BACKGROUND AND OBJECTIVES Multiple-breath washout (MBW) is an attractive test to assess ventilation inhomogeneity, a marker of peripheral lung disease. Standardization of MBW is hampered as little data exists on possible measurement bias. We aimed to identify potential sources of measurement bias based on MBW software settings. METHODS We used unprocessed data from nitrogen (N2) MBW (Exhalyzer D, Eco Medics AG) applied in 30 children aged 5-18 years: 10 with CF, 10 formerly preterm, and 10 healthy controls. This setup calculates the tracer gas N2 mainly from measured O2 and CO2concentrations. The following software settings for MBW signal processing were changed by at least 5 units or >10% in both directions or completely switched off: (i) environmental conditions, (ii) apparatus dead space, (iii) O2 and CO2 signal correction, and (iv) signal alignment (delay time). Primary outcome was the change in lung clearance index (LCI) compared to LCI calculated with the settings as recommended. A change in LCI exceeding 10% was considered relevant. RESULTS Changes in both environmental and dead space settings resulted in uniform but modest LCI changes and exceeded >10% in only two measurements. Changes in signal alignment and O2 signal correction had the most relevant impact on LCI. Decrease of O2 delay time by 40 ms (7%) lead to a mean LCI increase of 12%, with >10% LCI change in 60% of the children. Increase of O2 delay time by 40 ms resulted in mean LCI decrease of 9% with LCI changing >10% in 43% of the children. CONCLUSIONS Accurate LCI results depend crucially on signal processing settings in MBW software. Especially correct signal delay times are possible sources of incorrect LCI measurements. Algorithms of signal processing and signal alignment should thus be optimized to avoid susceptibility of MBW measurements to this significant measurement bias.
Resumo:
BACKGROUND Patients after primary hip or knee replacement surgery can benefit from postoperative treatment in terms of improvement of independence in ambulation, transfers, range of motion and muscle strength. After discharge from hospital, patients are referred to different treatment destination and modalities: intensive inpatient rehabilitation (IR), cure (medically prescribed stay at a convalescence center), or ambulatory treatment (AT) at home. The purpose of this study was to 1) measure functional health (primary outcome) and function relevant factors in patients with hip or knee arthroplasty and to compare them in relation to three postoperative management strategies: AT, Cure and IR and 2) compare the post-operative changes in patient's health status (between preoperative and the 6 month follow-up) for three rehabilitation settings. METHODS Natural observational, prospective two-center study with follow-up. Sociodemographic data and functional mobility tests, Timed Up and Go (TUG) and Iowa Level of Assistance Scale (ILOAS) of 201 patients were analysed before arthroplasty and at the end of acute hospital stay (mean duration of stay: 9.7 days +/- 3.9). Changes in health state were measured with the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) before and 6 months after arthroplasty. RESULTS Compared to patients referred for IR and Cure, patients referred for AT were significantly younger and less comorbid. Patients admitted to IR had the highest functional disability before arthroplasty. Before rehabilitation, mean TUG was 40.0 s in the IR group, 33.9 s in the Cure group, and 27.5 s in the AT group, and corresponding mean ILOAS was 16.0, 13.0 and 12.2 (50.0 = worst). At the 6 months follow-up, the corresponding effect sizes of the WOMAC global score were 1.32, 1.87, and 1.51 (>0 means improvement). CONCLUSIONS Age, comorbidity and functional disability are associated with referral for intensive inpatient rehabilitation after hip or knee arthroplasty and partly affect health changes after rehabilitation.
Resumo:
BACKGROUND Survival after diagnosis is a fundamental concern in cancer epidemiology. In resource-rich settings, ambient clinical databases, municipal data and cancer registries make survival estimation in real-world populations relatively straightforward. In resource-poor settings, given the deficiencies in a variety of health-related data systems, it is less clear how well we can determine cancer survival from ambient data. METHODS We addressed this issue in sub-Saharan Africa for Kaposi's sarcoma (KS), a cancer for which incidence has exploded with the HIV epidemic but for which survival in the region may be changing with the recent advent of antiretroviral therapy (ART). From 33 primary care HIV Clinics in Kenya, Uganda, Malawi, Nigeria and Cameroon participating in the International Epidemiologic Databases to Evaluate AIDS (IeDEA) Consortia in 2009-2012, we identified 1328 adults with newly diagnosed KS. Patients were evaluated from KS diagnosis until death, transfer to another facility or database closure. RESULTS Nominally, 22% of patients were estimated to be dead by 2 years, but this estimate was clouded by 45% cumulative lost to follow-up with unknown vital status by 2 years. After adjustment for site and CD4 count, age <30 years and male sex were independently associated with becoming lost. CONCLUSIONS In this community-based sample of patients diagnosed with KS in sub-Saharan Africa, almost half became lost to follow-up by 2 years. This precluded accurate estimation of survival. Until we either generally strengthen data systems or implement cancer-specific enhancements (e.g., tracking of the lost) in the region, insights from cancer epidemiology will be limited.
Resumo:
We examined high-resolution cross-shelf distributions of particulate organic carbon (POC) and dissolved O(2) during the upwelling season off the Oregon coast. Oxygen concentrations were supersaturated in surface waters, and hypoxic in near-bottom waters, with greatly expanded hypoxic conditions late in the season. Simplified time-dependent mass balances on cross-shelf integrated concentrations of these two parameters, found the following: ( 1) The average net rate of photosynthesis generated 2.1 mmol O(2) m(-3) d(-1) and ( 2) essentially none of the corresponding net carbon fixation of 1.4 mmol m(-3) d(-1) could be accounted for in the observed standing stocks of POC. After examining other possible sinks for carbon, we conclude that most of the net production is being exported to the adjacent deep ocean. A simplified POC budget suggests that about a quarter of the export is via alongshore advection, and the remainder is due to some other process. We propose a simplistic conceptual model of across-shelf transport in which POC sinks to the bottom boundary layer where it comes into contact with mineral ballast material but is kept in suspension by high turbulence. When upwelling conditions ease, the BBL waters move seaward, carrying the suspended, ballasted POC with it where it sinks rapidly into the deep ocean at the shelf break. This suggests a mechanism whereby the duration and frequency of upwelling events and relaxations can determine the extent to which new carbon produced by photosynthesis in the coastal ocean is exported to depth rather than being respired on the shelf.
Resumo:
The Princeton Ocean Model is used to study the circulation in the Pear River Estuary (PRE) and the adjacent coastal waters in the winter and summer seasons. Wong et al. [2003] compares the simulation results with the in situ measurements collected during the Pearl River Estuary Pollution Project (PREPP). In this paper, sensitivity experiments are carried out to examine the plume and the associated frontal dynamics in response to seasonal discharges and monsoon winds. During the winter, convergence between the seaward spreading plume water and the saline coastal water sets up a salinity front that aligns from the northeast to the southwest inside the PRE. During the summer the plume water fills the PRE at the surface and spreads eastward in the coastal waters in response to the prevailing southwesterly monsoon. The overall alignment of the plume is from the northwest to the southeast. The subsurface front is similar to that in the winter and summer except that the summer front is closer to the mouth and the winter front closer to the head of the estuary. Inside the PRE, bottom flows are always toward the head of the estuary, attributed to the density gradient associated with the plume front. In contrast, bottom flows in the shelf change from offshore in winter to onshore in summer, reflecting respectively the wintertime downwelling and summertime upwelling. Wind also plays an essential role in controlling the plume at the surface. An easterly wind drives the plume westward regardless winter or summer. The eastward spreading of the plume during the summer can be attributed to the southerly component of the wind. On the other hand, the surface area of the plume is positively proportional to the amount of discharge.
Resumo:
Arctic Ocean freshening can exert a controlling influence on global climate, triggering strong feedbacks on ocean-atmospheric processes and affecting the global cycling of the world's oceans. Glacier-fed ocean currents such as the Alaska Coastal Current are important sources of freshwater for the Bering Sea shelf, and may also influence the Arctic Ocean freshwater budget. Instrumental data indicate a multiyear freshening episode of the Alaska Coastal Current in the early 21st century. It is uncertain whether this freshening is part of natural multidecadal climate variability or a unique feature of anthropogenically induced warming. In order to answer this, a better understanding of past variations in the Alaska Coastal Current is needed. However, continuous long-term high-resolution observations of the Alaska Coastal Current have only been available for the last 2 decades. In this study, specimens of the long-lived crustose coralline alga Clathromorphum nereostratum were collected within the pathway of the Alaska Coastal Current and utilized as archives of past temperature and salinity. Results indicate that coralline algal Mg/Ca ratios provide a 60 year record of sea surface temperatures and track changes of the Pacific Decadal Oscillation, a pattern of decadal-to-multidecadal ocean-atmosphere climate variability centered over the North Pacific. Algal Ba/Ca ratios (used as indicators of coastal freshwater runoff) are inversely correlated to instrumentally measured Alaska Coastal Current salinity and record the period of freshening from 2001 to 2006. Similar multiyear freshening events are not evident in the earlier portion of the 60 year Ba/Ca record. This suggests that the 21st century freshening of the Alaska Coastal Current is a unique feature related to increasing glacial melt and precipitation on mainland Alaska.
Resumo:
The goal of this study was to test the hypothesis that the aggregated state of natural marine particles constrains the sensitivity of optical beam attenuation to particle size. An instrumented bottom tripod was deployed at the 12-m node of the Martha's Vineyard Coastal Observatory to monitor particle size distributions, particle size-versus-settling-velocity relationships, and the beam attenuation coefficient (c(p)) in the bottom boundary layer in September 2007. An automated in situ filtration system on the tripod collected 24 direct estimates of suspended particulate mass (SPM) during each of five deployments. On a sampling interval of 5 min, data from a Sequoia Scientific LISST 100x Type B were merged with data from a digital floc camera to generate suspended particle volume size distributions spanning diameters from approximately 2 mu m to 4 cm. Diameter-dependent densities were calculated from size-versus-settling-velocity data, allowing conversion of the volume size distributions to mass distributions, which were used to estimate SPM every 5 min. Estimated SPM and measured c(p) from the LISST 100x were linearly correlated throughout the experiment, despite wide variations in particle size. The slope of the line, which is the ratio of c(p) to SPM, was 0.22 g m(-2). Individual estimates of c(p):SPM were between 0.2 and 0.4 g m(-2) for volumetric median particle diameters ranging from 10 to 150 mu m. The wide range of values in c(p):SPM in the literature likely results from three factors capable of producing factor-of-two variability in the ratio: particle size, particle composition, and the finite acceptance angle of commercial beam-transmissometers.
Resumo:
In this study we examined the spatial and temporal variability of particulate organic material (POM) off Oregon during the upwelling season. High-resolution vertical profiling of beam attenuation was conducted along two cross-shelf transects. One transect was located in a region where the shelf is relatively uniform and narrow (off Cascade Head (CH)); the second transect was located in a region where the shelf is shallow and wide (off Cape Perpetua (CP)). In addition, water samples were collected for direct analysis of chlorophyll, particulate organic carbon (POC), and particulate organic nitrogen (PON). Beam attenuation was highly correlated with POC and PON. Striking differences in distribution patterns and characteristics of POM were observed between CH and CP. Off CH, elevated concentrations of chlorophyll and POC were restricted to the inner shelf and were highly variable in time. The magnitude of the observed short-term temporal variability was of the same order as that of the seasonal variability reported in previous studies. Elevated concentrations of nondegraded chlorophyll and POM were observed near the bottom. Downwelling and rapid sinking are two mechanisms by which phytoplankton cells can be delivered to the bottom before being degraded. POM may be then transported across the shelf via the benthic nepheloid layer. Along the CP transect, concentrations of POM were generally higher than they were along the CH transect and extended farther across the shelf. Characteristics of surface POM, namely, C: N ratios and carbon: chlorophyll ratios, differed between the two sites. These differences can be attributed to differences in shelf circulation.
Resumo:
The tension between technical experts and the populations they seek to serve is well established in the literature examining professional social problem solving. In this piece, I examine this tension as one between the distinct discursive worlds of technical expertise and community voice. I develop an analytic process, IMAP, for exploring this tension by looking at a wide variety of professional orientations around a relatively fixed concept of community voice. IMAP involves I&barbelow;dentifying social problem solvers, M&barbelow;apping social problem solvers' claims, A&barbelow;nalyzing professional orientations that arise from this mapping, and P&barbelow;redicting, diagnosing, and remediating conflicts. IMAP can be used by analysts external to social problem solving settings or by social problem solvers themselves. The use of IMAP by external experts poses questions of expert alignment with either of the discursive worlds. I examine two cases in public health practice settings: a mobile immunization service and the efforts of a foundation to improve health in an inner-city neighborhood. I develop four modal types that can be anticipated in social problem solving settings or, more specifically, in public health practice. Understanding of these “world views” can enhance mutual understanding between public health professionals and between public health professionals and the communities they seek to serve. IMAP might also address ongoing conflicts to clarify differences in unspoken normative commitments and the impact of these on social problem solving. I discuss implications of the research for public health practice and further research in the area. ^
Resumo:
This paper describes the spatial data handling procedures used to create a vector database of the Connecticut shoreline from Coastal Survey Maps. The appendix contains detailed information on how the procedures were implemented using Geographic Transformer Software 5 and ArcGIS 8.3. The project was a joint project of the Connecticut Department of Environmental Protection and the University of Connecticut Center for Geographic Information and Analysis.