952 resultados para attitude-behavior relations
Resumo:
Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ∼4 nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.
Resumo:
The surface chemistry and dispersion properties of aqueous Ti 3AlC2 suspension were studied in terms of hydrolysis, adsorption, electrokinetic, and rheological measurements. The Ti 3AlC2 particle had complex surface hydroxyl groups, such as ≡Ti-OH,=Al-OH, and -OTi-(OH)2, etc. The surface charging of the Ti3AlC2 particle and the ion environment of suspensions were governed by these surface groups, which thus strongly influenced the stability of Ti3AlC2 suspensions. PAA dispersant was added into the Ti3AlC2 suspension to depress the hydrolysis of the surface groups by the adsorption protection mechanism and to increase the stability of the suspension by the steric effect. Ti3AlC2 suspensions with 2.0 dwb% PAA had an excellent stability at pH=∼5 and presented the characteristics of Newtonian fluid. Based on the well-dispersed suspension, dense Ti3AlC2 materials were obtained by slip casting and after pressureless sintering. This work provides a feasible forming method for the engineering applications of MAX-phase ceramics, wherein complex shapes, large dimensions, or controlled microstructures are needed.
Resumo:
The cyclic-oxidation behavior of Ti3SiC2-base material was studied at 1100°C in air. Scale spallation and weight loss were not observed in the present tests and the weight gain would just continue if the experiments were not interrupted. The present results demonstrated that the scale growth on Ti3SiC2-base material obeyed a parabolic rate law up to 20 cycles. It then changed to a linear rate with further increasing cycles. The scales formed on the Ti3SiC2base material were composed of an inward-growing, fine-grain mixture of Ti022 + SiO2 and an outward-growing, coarse-grain TiO2. Theoretical calculations show that the mismatch in thermal expansion coefficients between the inner scale and Ti3SiC2-base matrix is small. The outer TiO2 layer was under very low compressive stress, while the inner TiO2 + SiO2 layer was under tensile stress during cooling. Scale spaliation is, therefore, not expected and the scale formed on Ti3SiC2-base material is adherent and resistant to cyclic oxidation.
Resumo:
Electrical Switching Studies on bulk Ge10Se90-xTlx ( 15 <= x <= 34) glasses have been undertaken to examine the type of switching, composition and thickness dependence of switching voltages. Unlike Ge-Se-Tl thin films which exhibit memory switching, the bulk Ge10Se90-xTlx glasses are found to exhibit threshold type switching with fluctuations seen in their current-voltage (I-V) characteristics. Further, it is observed that the switching voltages (V-T) of Ge10Se90-xTlx glasses decrease with the increase in the Tl concentration. An effort has been made to understand the observed composition dependence on the basis of nature of bonding of Tl atoms and a decrease in the chemical disorder with composition. In addition. the network connectivity and metallicity factors also contribute for the observed decrease in the switching voltages of Ge10Se90-xTlx glasses with Tl addition. It is also interesting to note that the composition dependence of switching voltages of Ge10Se90-xTlx glasses exhibit a small Cusp around the composition x = 22. which is understood on the basis of a thermally reversing window in this system in the composition range 22 <= x <= 30. The thickness dependence of switching voltages has been found to provide an insight about the type of switching mechanism involved in these samples. (C) 2009 Elsevier B.V. All rights reserved
Resumo:
Dimensional analysis using π-theorem is applied to the variables associated with plastic deformation. The dimensionless groups thus obtained are then related and rewritten to obtain the constitutive equation. The constants in the constitutive equation are obtained using published flow stress data for carbon steels. The validity of the constitutive equation is tested for steels with up to 1.54 wt%C at temperatures: 850–1200 °C and strain rates: 6 × 10−6–2 × 10−2 s−1. The calculated flow stress agrees favorably with experimental data.
Resumo:
The hot deformation behavior of beta-quenched Zr-1 Nb-1Sn was studied in the temperature range 650-1050 degrees C and strain rate range 0.001-100 s(-1) using processing maps. These maps revealed three different domains: a domain of dynamic recovery at temperatures <700 degrees C and at strain rates <3 x 10(-3) s(-1), a domain of dynamic recrystallization in the temperature range 750-950 C-degrees and at strain rates <10(-2) S-1 with a peak at 910 degrees C and 10(-3) S-1 (in alpha + beta phase field), and a domain of large-grain superplasticity in the beta phase field at strain rates <10(-2) s(-1). In order to identify the rate controlling mechanisms involved in these domains, kinetic analysis was carried out to determine the various activation parameters. In addition, the processing maps showed a regime of flow instability spanning both alpha + beta and beta phase fields. The hot deformation behavior of Zr 1Nb-1Sn was compared with that of Zr, Zr-2.5Nb and Zircaloy-2 to bring out the effects of alloy additions. (C) 2006 Elsevier BN. All rights reserved.
Resumo:
Highly ordered mesoporous carbon (MC) has been synthesized from sucrose, a non-toxic and costeffective source of carbon. X-ray diffraction, N2 adsorption–desorption isotherm and transmission electron micrograph (TEM) were used to characterize the MC. The XRD patterns show the formation of highly ordered mesoporous structures of SBA15 and mesoporous carbon. The N2 adsorptiondesorption isotherms suggest that the MC exhibits a narrow pore-size distribution with high surface area of 1559 m2/g. The potential application of MC as a novel electrode material was investigated using cyclic voltammetry for riboflavin (vitamin B2) and dopamine. MC-modified glassy carbon electrode (MC/GC) shows increase in peak current compared to GC electrode in potassium ferricyanide which clearly suggest that MC/GC possesses larger electrode area (1.8 fold) compared with bare GC electrode. The electrocatalytic behavior of MC/GC was investigated towards the oxidation of riboflavin (vitamin B2) and dopamine using cyclic voltammetry which show larger oxidation current compared to unmodified electrode and thus MC/GC may have the potential to be used as a chemically modified electrode.
Resumo:
A novel manganese phosphite-oxalate, [C2N2H10][Mn-2(II)(OH2)(2)(HPO3)(2)(C2O4)] has been hydothermally synthesized and its structure determined by single-crystal X-ray diffraction. The structure consists of neutral manganese phosphite layers, [Mn(HPO3)](infinity), formed by MnO6 octahedra and HPO3 units, cross-linked by the oxalate moieties. The organic cations occupy the middle of the 8-membered one dimensional channels. Magnetic studies indicate weak antiferromagnetic interactions between the Mn2+ ions. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Pack ice is an aggregate of ice floes drifting on the sea surface. The forces controlling the motion and deformation of pack ice are air and water drag forces, sea surface tilt, Coriolis force and the internal force due to the interaction between ice floes. In this thesis, the mechanical behavior of compacted pack ice is investigated using theoretical and numerical methods, focusing on the three basic material properties: compressive strength, yield curve and flow rule. A high-resolution three-category sea ice model is applied to investigate the sea ice dynamics in two small basins, the whole Gulf Riga and the inside Pärnu Bay, focusing on the calibration of the compressive strength for thin ice. These two basins are on the scales of 100 km and 20 km, respectively, with typical ice thickness of 10-30 cm. The model is found capable of capturing the main characteristics of the ice dynamics. The compressive strength is calibrated to be about 30 kPa, consistent with the values from most large-scale sea ice dynamic studies. In addition, the numerical study in Pärnu Bay suggests that the shear strength drops significantly when the ice-floe size markedly decreases. A characteristic inversion method is developed to probe the yield curve of compacted pack ice. The basis of this method is the relationship between the intersection angle of linear kinematic features (LKFs) in sea ice and the slope of the yield curve. A summary of the observed LKFs shows that they can be basically divided into three groups: intersecting leads, uniaxial opening leads and uniaxial pressure ridges. Based on the available observed angles, the yield curve is determined to be a curved diamond. Comparisons of this yield curve with those from other methods show that it possesses almost all the advantages identified by the other methods. A new constitutive law is proposed, where the yield curve is a diamond and the flow rule is a combination of the normal and co-axial flow rule. The non-normal co-axial flow rule is necessary for the Coulombic yield constraint. This constitutive law not only captures the main features of forming LKFs but also takes the advantage of avoiding overestimating divergence during shear deformation. Moreover, this study provides a method for observing the flow rule for pack ice during deformation.
Resumo:
AIM AND BACKGROUND: While the importance of morale is well researched in the nursing literature, strategies and interventions are not so prolific. The complexities of interpersonal relationships within the clinical domain, and the critical issues faced by nurses on a daily basis, indicate that morale, job satisfaction and motivation are essential components in improving workplace efficiency, output and communication amongst staff. Drawing on educational, organizational and psychological literature, this paper argues that the ability to inspire morale in staff is a fundamental indicator of sound leadership and managerial characteristics. EVALUATION AND KEY ISSUES: Four practical concepts that could be implemented in the clinical setting are proposed. These include: role preparation for managers, understanding internal and external motivation, fostering internal motivation in nursing staff, and the importance of attitude when investing in relationships.
Resumo:
Studies on the electrical switching behavior of melt quenched bulk Si15Te85-xSbx glasses have been undertaken in the composition range (1 <= x <= 10), in order to understand the effect of Sb addition on the electrical switching behavior of Si15Te85-x base glass. It has been observed that all the Si15Te85-xSbx glasses studied exhibit a smooth memory type switching. Further, the switching voltages are found to decrease almost linearly with Sb content, which indicates that the metallicity of the dopant plays a dominant role in this system compared to network connectivity/rigidity. The thickness dependence of switching voltage (V-th) indicates a clear thermal origin for the switching mechanism. The temperature variation of switching voltages reveals that the Si15Te85-xSbx glasses studied have a moderate thermal stability. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We report the fabrication of La0.7Ca0.3MnO3 nanotubes (LCMONTs) with a diameter of about 200 nm, by a modified sol-gel method utilizing nanochannel alumina templates. High resolution transmission electron microscopy confirmed that the obtained LCMONTs are made up of nanoparticles (8-12 nm), which are randomly aligned in the wall of the nanotubes. The strong irreversibility between zero field cooling (ZFC) and field cooling (FC) magnetization curves as well as a cusplike peak in the ZFC curve gives strong support for surface spin glass behavior.