702 resultados para aspertion saupoudrage de glyphosate
Resumo:
O agriãozinho é uma planta daninha de grande importância em pastagens do Brasil e apresenta destacada agressividade, sendo seu controle, portanto, desejável para o sucesso da produção forrageira. O objetivo deste trabalho foi avaliar o controle químico de Synedrellopsis grisebachii na fase reprodutiva e as suas consequências sobre as características germinativas dos aquênios da planta daninha. Os tratamentos constaram da aplicação dos herbicidas glyphosate (100, 200, 900 e 1.800 g ha-1), paraquat (34, 68, 300 e 600 g ha-1) e triclopyr (75, 150, 667 e 1.334 g ha-1), além da testemunha sem aplicação. Foram coletados aquênios aos 15 dias após a aplicação, sendo estes submetidos ao teste de germinação, determinando-se a porcentagem e o índice de velocidade de germinação. Após 29 dias em germinação, verificou-se a viabilidade dos aquênios não germinados, através do teste de tetrazólio. A eficácia dos herbicidas foi avaliada por meio de notas visuais de controle aos 7, 14, 21 e 28 DAA. Conclui-se que para o controle total de S. grisebachii, em estádio reprodutivo, é necessária a aplicação de 1.334 g ha-1 de triclopyr. Nesse estádio, a planta apresentou grande tolerância ao glyphosate e também ao paraquat. Quanto às características germinativas da progênie, o herbicida triclopyr nas doses de 150 e 667 g ha-1 promoveu redução na velocidade de germinação e na viabilidade, enquanto o glyphosate e paraquat não proporcionaram efeito.
Resumo:
Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.
Resumo:
Pharmaceuticals are useful tools to prevent and treat human and animal diseases. Following administration, a significant fraction of pharmaceuticals is excreted unaltered into faeces and urine and may enter the aquatic ecosystem and agricultural soil through irrigation with recycled water, constituting a significant source of emerging contaminants into the environment. Understanding major factors influencing their environmental fate is consequently needed to value the risk, reduce contamination, and set up bioremediation technologies. The antiviral drug Tamiflu (oseltamivir carboxylate, OC) has received recent attention due to the potential use as a first line defence against H5N1 and H1N1 influenza viruses. Research has shown that OC is not removed during conventional wastewater treatments, thus having the potential to enter surface water bodies. A series of laboratory experiments investigated the fate and the removal of OC in surface water systems in Italy and Japan and in a municipal wastewater treatment plant. A preliminary laboratory study investigated the persistence of the active antiviral drug in water samples from an irrigation canal in northern Italy (Canale Emiliano Romagnolo). After an initial rapid decrease, OC concentration slowly decreased during the remaining incubation period. Approximately 65% of the initial OC amount remained in water at the end of the 36-day incubation period. A negligible amount of OC was lost both from sterilized water and from sterilized water/sediment samples, suggesting a significant role of microbial degradation. Stimulating microbial processes by the addition of sediments resulted in reduced OC persistence. Presence of OC (1.5 μg mL-1) did not significantly affect the metabolic potential of the water microbial population, that was estimated by glyphosate and metolachlor mineralization. In contrast, OC caused an initial transient decrease in the size of the indigenous microbial population of water samples. A second laboratory study focused on basic processes governing the environmental fate of OC in surface water from two contrasting aquatic ecosystems of northern Italy, the River Po and the Venice Lagoon. Results of this study confirmed the potential of OC to persist in surface water. However, the addition of 5% of sediments resulted in rapid OC degradation. The estimated half-life of OC in water/sediment of the River Po was 15 days. After three weeks of incubation at 20 °C, more than 8% of 14C-OC evolved as 14CO2 from water/sediment samples of the River Po and Venice Lagoon. OC was moderately retained onto coarse sediments from the two sites. In water/sediment samples of the River Po and Venice Lagoon treated with 14C-OC, more than 30% of the 14C-residues remained water-extractable after three weeks of incubation. The low affinity of OC to sediments suggests that the presence of sediments would not reduce its bioavailability to microbial degradation. Another series of laboratory experiments investigated the fate and the removal of OC in two surface water ecosystems of Japan and in the municipal wastewater treatment plant of the city of Bologna, in Northern Italy. The persistence of OC in surface water ranged from non-detectable degradation to a half-life of 53 days. After 40 days, less than 3% of radiolabeled OC evolved as 14CO2. The presence of sediments (5%) led to a significant increase of OC degradation and of mineralization rates. A more intense mineralization was observed in samples of the wastewater treatment plant when applying a long incubation period (40 days). More precisely, 76% and 37% of the initial radioactivity applied as 14C-OC was recovered as 14CO2 from samples of the biological tank and effluent water, respectively. Two bacterial strains growing on OC as sole carbon source were isolated and used for its removal from synthetic medium and environmental samples, including surface water and wastewater. Inoculation of water and wastewater samples with the two OC-degrading strains showed that mineralization of OC was significantly higher in both inoculated water and wastewater, than in uninoculated controls. Denaturing gradient gel electrophoresis and quantitative PCR analysis showed that OC would not affect the microbial population of surface water and wastewater. The capacity of the ligninolytic fungus Phanerochaete chrysosporium to degrade a wide variety of environmentally persistent xenobiotics has been largely reported in literature. In a series of laboratory experiments, the efficiency of a formulation using P. chrysosporium was evaluated for the removal of selected pharmaceuticals from wastewater samples. Addition of the fungus to samples of the wastewater treatment plant of Bologna significantly increased (P < 0.05) the removal of OC and three antibiotics, erythromycin, sulfamethoxazole, and ciprofloxacin. Similar effects were also observed in effluent water. OC was the most persistent of the four pharmaceuticals. After 30 days of incubation, approximately two times more OC was removed in bioremediated samples than in controls. The highest removal efficiency of the formulation was observed with the antibiotic ciprofloxacin. The studies included environmental aspects of soil contamination with two emerging veterinary contaminants, such as doramectin and oxibendazole, wich are common parasitic treatments in cattle farms.
Resumo:
Agricultural pesticide use has increased worldwide during the last several decades, but the long-term fate, storage, and transfer dynamics of pesticides in a changing environment are poorly understood. Many pesticides have been progressively banned, but in numerous cases, these molecules are stable and may persist in soils, sediments, and ice. Many studies have addressed the question of their possible remobilization as a result of global change. In this article, we present a retro-observation approach based on lake sediment records to monitor micropollutants and to evaluate the long-term succession and diffuse transfer of herbicides, fungicides, and insecticide treatments in a vineyard catchment in France. The sediment allows for a reliable reconstruction of past pesticide use through time, validated by the historical introduction, use, and banning of these organic and inorganic pesticides in local vineyards. Our results also revealed how changes in these practices affect storage conditions and, consequently, the pesticides’ transfer dynamics. For example, the use of postemergence herbicides (glyphosate), which induce an increase in soil erosion, led to a release of a banned remnant pesticide (dichlorodiphenyltrichloro- ethane, DDT), which had been previously stored in vineyard soil, back into the environment. Management strategies of ecotoxico- logical risk would be well served by recognition of the diversity of compounds stored in various environmental sinks, such as agriculture soil, and their capability to become sources when environmental conditions change.
Resumo:
El objetivo fue determinar la concentración efectiva media de reducción del crecimiento radical (CE50), de una formulación del herbicida glifosato mediante bioensayos de germinación con semillas de lechuga y de trigo. Para lechuga se probaron 9 dosis/tratamientos decrecientes entre 1.215 y 0,01215 g i.a.ha-1 (formulado: Sal amónica de la N-Fosfonometil glicina, 40,5 [g e.a. glifosato 36,9% p/v]) y para trigo 5 dosis decrecientes (entre 12,15 y 1,215 g i.a.ha-1) y su respectivo control negativo (agua destilada). Se utilizaron cajas de Petri, con papel de filtro en la base humedecido con 3 ml de la solución correspondiente. Se sembraron 20 semillas por caja, distribuyéndose los tratamientos en bloques al azar con 4 repeticiones, en cámara de crecimiento a 20°C con alternancia de luz y oscuridad. Se midió la longitud radicular de todas las semillas de cada tratamiento con calibre digital. Se determinó el porcentaje de germinación y se calculó el índice de germinación. Las CE50, es decir, las dosis que redujeron en un 50% el crecimiento radical para lechuga y trigo, fueron 6,682 y 9,416 g i.a.ha-1, respectivamente. Los materiales probados resultaron sensibles a distintas dosis de glifosato y por lo tanto pueden utilizarse como indicadores biológicos de toxicidad específica.
Resumo:
Agricultural pesticide use has increased worldwide during the last several decades, but the long-term fate, storage, and transfer dynamics of pesticides in a changing environment are poorly understood. Many pesticides have been progressively banned, but in numerous cases, these molecules are stable and may persist in soils, sediments, and ice. Many studies have addressed the question of their possible remobilization as a result of global change. In this article, we present a retro-observation approach based on lake sediment records to monitor micropollutants and to evaluate the long-term succession and diffuse transfer of herbicides, fungicides, and insecticide treatments in a vineyard catchment in France. The sediment allows for a reliable reconstruction of past pesticide use through time, validated by the historical introduction, use, and banning of these organic and inorganic pesticides in local vineyards. Our results also revealed how changes in these practices affect storage conditions and, consequently, the pesticides' transfer dynamics. For example, the use of postemergence herbicides (glyphosate), which induce an increase in soil erosion, led to a release of a banned remnant pesticide (dichlorodiphenyltrichloroethane, DDT), which had been previously stored in vineyard soil, back into the environment. Management strategies of ecotoxicological risk would be well served by recognition of the diversity of compounds stored in various environmental sinks, such as agriculture soil, and their capability to become sources when environmental conditions change.
Resumo:
La pataca (Helianthus tuberosus L.) es una especie de cultivo con un alto potencial en la producción de hidratos de carbono de reserva en forma de polifructanos, especialmente inulina, que se acumulan temporalmente en los tallos en forma de polisacáridos para translocarse posteriormente a los tubérculos, donde son almacenados. Aunque tradicionalmente el producto de interés del cultivo son los tubérculos, que acumulan gran cantidad de hidratos de carbono fermentables (HCF) cuando se recogen al final del ciclo de desarrollo, en este trabajo se pretende evaluar el potencial de la pataca como productor de HCF a partir de los tallos cosechados en el momento de máximo contenido en HCF, mediante un sistema de cultivo plurianual. Se han realizado los siguientes estudios: i) Determinación del momento óptimo de cosecha en ensayos con 12 clones ii) Potencial del cultivo plurianual de la pataca en términos de producción anual de biomasa aérea y de HCF en cosechas sucesivas, iii) Ensayos de conservación de la biomasa aérea, iv) Estimación de los costes de las dos modalidades de cultivo de pataca para producción de HCF y v) Estimación de la sostenibilidad energética de la producción de bioetanol mediante la utilización de los subproductos. Para la determinación del momento óptimo de la cosecha de la biomasa aérea se ensayaron 12 clones de diferente precocidad en Madrid; 4 tempranos (Huertos de Moya, C-17, Columbia y D-19) y 8 tardíos (Boniches, China, K-8, Salmantina, Nahodka, C-13, INIA y Violeta de Rennes). El máximo contenido en HCF tuvo lugar en el estado fenológico de botón floral-flor que además coincidió con la máxima producción de biomasa aérea. De acuerdo con los resultados obtenidos, la cosecha de los clones tempranos se debería realizar en el mes de julio y en los clones tardíos en septiembre, siendo éstos últimos más productivos. La producción media más representativa entre los 12 clones, obtenida en el estado fenológico de botón floral fue de 23,40 t ms/ha (clon INIA), con un contenido medio en HCF de 30,30 % lo que supondría una producción potencial media de 7,06 t HCF/ha. La producción máxima en HCF se obtuvo en el clon Boniches con 7,61 t/ha y 22,81 t ms/ha de biomasa aérea. En el sistema de cultivo plurianual la cantidad de tallos por unidad de superficie aumenta cada año debido a la cantidad de tubérculos que van quedando en el terreno, sobre todo a partir del 3er año, lo que produce la disminución del peso unitario de los tallos, con el consiguiente riesgo de encamado. El aclareo de los tallos nacidos a principios de primavera mediante herbicidas tipo Glifosato o mediante una labor de rotocultor rebaja la densidad final de tallos y mejora los rendimientos del cultivo. En las experiencias de conservación de la biomasa aérea se obtuvo una buena conservación por un período de 6 meses de los HCF contenidos en los tallos secos empacados y almacenados bajo cubierta. Considerando que el rendimiento práctico de la fermentación alcohólica es de 0,5 l de etanol por cada kg de azúcar, la producción potencial de etanol para una cosecha de tallos de 7,06 t de HCF/ha sería de 3.530 l/ha. El bagazo producido en la extracción de los HCF de la biomasa aérea supondría 11,91 t/ha lo que utilizado para fines térmicos supone más de 3 veces la energía primaria requerida en el proceso de producción de etanol, considerando un poder calorífico inferior de 3.832,6 kcal/kg. Para una producción de HCF a partir de la biomasa aérea de 7,06 t/ha y en tubérculos al final del ciclo de 12,11 t/ha, los costes de producción estimados para cada uno de ellos fueron de 184,69 €/t para los HCF procedentes de la biomasa aérea y 311,30 €/t para los de tubérculos. Como resultado de este trabajo se puede concluir que la producción de HCF a partir de la biomasa aérea de pataca en cultivo plurianual, es viable desde un punto de vista técnico, con reducción de los costes de producción respecto al sistema tradicional de cosecha de tubérculos. Entre las ventajas técnicas de esta modalidad de cultivo, cabe destacar: la reducción de operaciones de cultivo, la facilidad y menor coste de la cosecha, y la posibilidad de conservación de los HCF en la biomasa cosechada sin mermas durante varios meses. Estas ventajas, compensan con creces el menor rendimiento por unidad de superficie que se obtiene con este sistema de cultivo frente al de cosecha de los tubérculos. Jerusalem artichoke (Helianthus tuberosus L.) (JA) is a crop with a high potential for the production of carbohydrates in the form of polyfructans, especially inulin, which are temporarily accumulated in the stems in the form of polysaccharides. Subsequently they are translocated to the tubers, where they are finally accumulated. In this work the potential of Jerusalem artichoke for fermentable carbohydrates from stems that are harvested at their peak of carbohydrates accumulation is assessed as compared to the traditional cultivation system that aims at the production of tubers harvested at the end of the growth cycle. Tubers are storage organs of polyfructans, namely fermentable carbohydrates. Studies addressed in this work were: i) Determination of the optimum period of time for stem harvesting as a function of clone precocity in a 12-clone field experiment; ii) Study of the potential of JA poly-annual crop regarding the annual yield of aerial biomass and fermentable carbohydrates (HCF) over the years; iii) Tests of storage of the aerial biomass, iv) Comparative analysis of the two JA cultivation systems for HCF production: the poly-annual system for aerial biomass harvesting versus the annual cultivation system for tubers and v) Estimation of the energy sustainability of the bioethanol production by using by-products of the production chain. In order to determine the best period of time for aerial biomass harvesting twelve JA clones of different precocity were tested in Madrid: four early clones (Huertos de Moya, C-17, Columbia and D-19) and eight late clones (Boniches, China, K-8 , Salmantina, Nahodka, C-13, INIA and Violeta de Rennes). Best time was between the phenological stages of floral buds (closed capitula) and blossom (opened capitula), period in which the peak of biomass production coincides with the peak of HCF accumulation in the stems. According to the results, the early clones should be harvested in July and the late ones in September, being the late clones more productive. The clone named INIA was the one that exhibited more steady yields in biomass over the 12 clones experimented. The average potential biomass production of this clone was 23.40 t dm/ha when harvested at the floral buds phenological stage; mean HCF content is 30.30%, representing 7.06 t HCF/ha yield. However, the highest HCF production was obtained for the clone Boniches, 7.61 t HCF/ha from a production of 22.81 t aerial biomass/ha. In the poly-annual cultivation system the number of stems per unit area increases over the years due to the increase in the number of tubers that are left under ground; this effect is particularly important after the 3rd year of the poly-annual crop and results in a decrease of the stems unit weight and a risk of lodging. Thinning of JA shoots in early spring, by means of an herbicide treatment based on glyphosate or by means of one pass with a rotary tiller, results in a decrease of the crop stem density and in higher crop yields. Tests of biomass storing showed that the method of keeping dried stems packed and stored under cover results in a good preservation of HCF for a period of six months at least. Assuming that the fermentation yield is 0.5 L ethanol per kg sugars and a HCF stem production of 7.06 t HCF/ha, the potential for bioethanol is estimated at 3530 L/ha. The use of bagasse -by-product of the process of HCF extraction from the JA stems- for thermal purposes would represent over 3 times the primary energy required for the industrial ethanol production process, assuming 11.91 t/ha bagasse and 3832.6 kcal/kg heating value. HCF production costs of 7.06 t HCF/ha yield from aerial biomass and HCF production costs of 12.11 t HCF/ha from tubers were estimated at 184.69 €/t HCF and 311.30 €/t HCF, respectively. It can be concluded that the production of HCF from JA stems, following a poly-annual cultivation system, can be feasible from a technical standpoint and lead to lower production costs as compared to the traditional annual cultivation system for the production of HCF from tubers. Among the technical advantages of the poly-annual cultivation system it is worth mentioning the reduction in crop operations, the ease and efficiency of harvesting operations and the possibility of HCF preservation without incurring in HCF losses during the storage period, which can last several months. These advantages might compensate the lower yield of HCF per unit area that is obtained in the poly-annual crop system, which aims at stems harvesting, versus the annual one, which involves tubers harvesting.
Resumo:
Nitrate leaching decreases crop available N and increases water contamination. Replacing fallow by cover crops (CC) is an alternative to reduce nitrate contamination, because it reduces overall drainage and soil mineral N accumulation. A study of the soil N and nitrate leaching was conducted during 5 years in a semi-arid irrigated agricultural area of Central Spain. Three treatments were studied during the intercropping period of maize (Zea mays L.): barley (Hordeum vulgare L.), vetch (Vicia villosa L.), and fallow. Cover crops, sown in October, were killed by glyphosate application in March, allowing direct seeding of maize in April. All treatments were irrigated and fertilised following the same procedure. Soil water content was measured using capacity probes. Soil Nmin accumulation was determined along the soil profile before sowing and after harvesting maize. Soil analysis was conducted at six depths every 0.20m in each plot in samples from 0 to 1.2-m depth. The mechanistic water balance model WAVE was applied in order to calculate drainage and plant growth of the different treatments, and apply them to the N balance. We evaluated the water balance of this model using the daily soil water content measurements of this field trial. A new Matlab version of the model was evaluated as well. In this new version improvements were made in the solute transport module and crop module. In addition, this new version is more compatible with external modules for data processing, inverse calibration and uncertainty analysis than the previous Fortran version. The model showed that drainage during the irrigated period was minimized in all treatments, because irrigation water was adjusted to crop needs, leading to nitrate accumulation on the upper layers after maize harvest. Then, during the intercrop period, most of the nitrate leaching occurred. Cover crops usually led to a shorter drainage period, lower drainage water amount and lower nitrate leaching than the treatment with fallow. These effects resulted in larger nitrate accumulation in the upper layers of the soil after CC treatments.
Resumo:
Routine monitoring of environmental pollution demands simplicity and speed without sacrificing sensitivity or accuracy. The development and application of sensitive, fast and easy to implement analytical methodologies for detecting emerging and traditional water and airborne contaminants in South Florida is presented. A novel method was developed for quantification of the herbicide glyphosate based on lyophilization followed by derivatization and simultaneous detection by fluorescence and mass spectrometry. Samples were analyzed from water canals that will hydrate estuarine wetlands of Biscayne National Park, detecting inputs of glyphosate from both aquatic usage and agricultural runoff from farms. A second study describes a set of fast, automated LC-MS/MS protocols for the analysis of dioctyl sulfosuccinate (DOSS) and 2-butoxyethanol, two components of Corexit®. Around 1.8 million gallons of those dispersant formulations were used in the response efforts for the Gulf of Mexico oil spill in 2010. The methods presented here allow the trace-level detection of these compounds in seawater, crude oil and commercial dispersants formulations. In addition, two methodologies were developed for the analysis of well-known pollutants, namely Polycyclic Aromatic Hydrocarbons (PAHs) and airborne particulate matter (APM). PAHs are ubiquitous environmental contaminants and some are potent carcinogens. Traditional GC-MS analysis is labor-intensive and consumes large amounts of toxic solvents. My study provides an alternative automated SPE-LC-APPI-MS/MS analysis with minimal sample preparation and a lower solvent consumption. The system can inject, extract, clean, separate and detect 28 PAHs and 15 families of alkylated PAHs in 28 minutes. The methodology was tested with environmental samples from Miami. Airborne Particulate Matter is a mixture of particles of chemical and biological origin. Assessment of its elemental composition is critical for the protection of sensitive ecosystems and public health. The APM collected from Port Everglades between 2005 and 2010 was analyzed by ICP-MS after acid digestion of filters. The most abundant elements were Fe and Al, followed by Cu, V and Zn. Enrichment factors show that hazardous elements (Cd, Pb, As, Co, Ni and Cr) are introduced by anthropogenic activities. Data suggest that the major sources of APM were an electricity plant, road dust, industrial emissions and marine vessels.
Resumo:
The soybean is the grain in which greater food dependency has Mexico, reason why as of 2008, the government has promoted his culture, granting excellent subsidies, as much to producers as to buyers of the grain, thus contributing to a recent process of expansion in certain states, as it happens in Campeche. The objetive of this article is the analysis of the characteristics and effects of those supports, as well as of the rest of factors that until today they have taken to the producers of the mentioned state to initiate or to expand the cultivation of the soybean. The findings of the investigation reveal that although the producers have improved their levels of income, the process is vulnerable, as it depends on variables like the governmental supports, the international prices of the soybean and exchange rate. Although the study of the negative effects of genetically modified soybeans (GM) in other areas (environment, biodiversity, deforestation, human and animal health) is not the purpose of this investigation, some information will be provided, as on the conflict between soybean producers and beekeepers in the state of Campeche.
Resumo:
The strong selection pressure exerted by intensive use of glyphosate in cultivated areas has selected populations of the Rubiaceae weed species Borreria latifolia (Aubl.) K.Shum. (broadleaf buttonweed), Galianthe chodatiana (Standl.) E.L. Cabral (galiante) and Richardia brasiliensis Gomes (Brazilian pusley) with differential sensitivity to this herbicide in the South region of Brazil. The control of these weeds with herbicides is troublesome and signals the need to incorporate management practices of ruderal flora and crops, more sustainable and that results in more efficient control for long-term. Therefore, it is very important to expand the information about their biology and management. This study aimed: (a) select efficient methods to overcome dormancy of B. latifolia and G. chodatiana and determine how they influence the kinetics of seeds germination; (b) analyze the effects of temperature, irradiance, pH, aluminum and salinity on seed germination and initial growth of the B. latifolia, G. chodatiana e R. brasiliensis seedlings; (c) evaluate tolerance to glyphosate levels in biotypes of B. latifolia, G. chodatiana e R. brasiliensis through dose-response curves and compare two methods to evaluate herbicidal control; (d) and evaluated the effectiveness of alternative herbicides in pre-emergence and in early and late post-emergence of the three species. The treatment with KNO3 2%/3h + gibberellic acid 400 ppm resulted in higher percentage of G. chodatiana seed germination. This treatment and also the dry heat (60°C/30 min) + KNO3 2%/3h were more effective in overcoming dormancy of B. latifolia. G. chodatiana and R. brasiliensis tolerate lower temperatures during the germination process, while B. latifolia tolerate higher temperatures. B. latifolia and R. brasiliensis are positive photoblastic while G. chodatiana is indifferent to the photoperiod. B. latifolia shows higher germination and early development in pH 3, while G. chodatiana and R. brasiliensis prefer pH range between 5 and 7. B. latifolia and G. chodatiana were more tolerant to the aluminum during the germination process than R. brasiliensis. Low salt levels were sufficient to reduce the seed germination of the three species. Some biotypes of B. latifolia and R. brasiliensis showed medium-high glyphosate tolerance, not being controlled by higher doses than recommended. The G. chodatiana specie was not controlled with the highest dose used, showing a high glyphosate tolerance. The sulfentrazone, s-metolachlor and saflufenacil herbicides sprayed in pre-emergence showed high efficacy both on B. latifolia and R. brasiliensis, while chlorimuron-ethyl and diclosulan were effective only on R. brasiliensis. In early post-emergence the fomesafen, lactofem and flumioxazin herbicides efficiently controlled plants of all species, while bentazon showed high efficacy only on B. latifolia. Noteworthy the susceptibility of the G. chodatiana specie for applications in early post-emergence, because the control effectiveness and the number of effective herbicides are reduced with increasing the plant age. Many treatments with tank mix or sequencial applications with glyphosate, were effective in controlling B. latifolia and R. brasiliensis plants in advanced stage of development.
Resumo:
Integration of multiple herbicide-resistant genes (trait stacking) into crop plants would allow over the top application of herbicides that are otherwise fatal to crops. The US has just approved Bollgard II® XtendFlex™ cotton which has dicamba, glyphosate and glufosinate resistance traits stacked. The pace of glyphosate resistance evolution is expected to be slowed by this technology. In addition, over the top application of two more herbicides may help to manage hard to kill weeds in cotton such as flax leaf fleabane and milk thistle. However, there are some issues that need to be considered prior to the adoption of this technology. Wherever herbicide tolerant technology is adopted, volunteer crops can emerge as a weed problem, as can herbicide resistant weeds. For cotton, seed movement is the most likely way for resistant traits to move around. Management of multiple stack volunteers may add additional complexity to volunteer management in cotton fields and along roadsides. This paper attempts to evaluate the pros and cons of trait stacking technology by analysing the available literature in other crop growing regions across the world. The efficacy of dicamba and glufosinate on common weeds of the Australian cotton system, herbicide resistance evolution, synergy and antagonisms due to herbicide mixtures, drift hazards and the evolution of herbicide resistance to glyphosate, glufosinate and dicamba were analysed based on the available literature.
Resumo:
Weed management has become increasingly challenging for cotton growers in Australia in the last decade. Glyphosate, the cornerstone of weed management in the industry, is waning in effectiveness as a result of the evolution of resistance in several species. One of these, awnless barnyard grass, is very common in Australian cotton fields, and is a prime example of the new difficulties facing growers in choosing effective and affordable management strategies. RIM (Ryegrass Integrated Management) is a computer-based decision support tool developed for the south-western Australian grains industry. It is commonly used there as a tool for grower engagement in weed management thinking and strategy development. We used RIM as the basis for a new tool that can fulfil the same types of functions for subtropical Australian cotton-grains farming systems. The new tool, BYGUM, provides growers with a robust means to evaluate five-year rotations including testing the economic value of fallows and fallow weed management, winter and summer cropping, cover crops, tillage, different herbicide options, herbicide resistance management, and more. The new model includes several northernregion- specific enhancements: winter and summer fallows, subtropical crop choices, barnyard grass seed bank, competition, and ecology parameters, and more freedom in weed control applications. We anticipate that BYGUM will become a key tool for teaching and driving the changes that will be needed to maintain sound weed management in cotton in the near future.
Resumo:
Considering their commercial importance, as these are the species of freshwater fish more commercialized in Brazil, their occurence in different kinds of aquatic environments (lakes, rivers and dams) and for being tolerant to a wide range of variation of various physical parameters and chemical water, the fish species Oreochromis niloticus, Cyprinus carpio and Colossoma macropomum were chosen for this study, furthermore, to test the toxicity we used the herbicide Roundup. The fingerlings of tilapia (Oreochromis niloticus), commun carp (Cyprinus carpio) and tambaqui (Colossoma macropomum) were submitted to the herbicide roundup in the following concentrations: 0.0 (control); 18,06; 19,10; 20,14; 21,18 and 22,22 mg.L-1, 0.0 (control); 13,89; 14,86; 15,83; 16,81 and 17,78 mg.L-1, and 0.0 (control); 18,06; 19,10; 20,14; 21,18 and 22,22 mg.L-1, respectively, three for 96 hours. The LC50 - 96h for O. niloticus, C. carpio and C. macropomum was 21,63, 15,33 and 20,06 mg.L-1 of the herbicide roundup, respectively. The results show that this herbicide is classified as slightly toxic to the three species. The values of dissolved oxygen, pH and temperature recorded in the aquarium control and aquarium experimental of the three fish species have remained without significant variations during the tests, which reduces the possibility of death caused by sudden variations of these parameters during the 96 hours the experiment. The values of LC50 between different species of fish were observed, noting that the species O.niloticus, C. carpio and C. macropomum showed no expressive differences. The values of environmental risk of Roundup were calculated to obtain more stringent parameters in assessing the dangerousness of those on nontargets. The risk of environmental contamination by Roundup for the Nile tilapia, common carp, and tambaqui are low for the lowest application rate (1 L.ha-1) and depths (1.5 and 2.0 m). The dilution of 100%, the highest recommended dose (5 L.ha-1) and depths (1.5 and 2.0 m) the risk is moderate for the three species. The values of the Risk Ratio (QR) were greater than 0,1, indicating that the values of the CAE and LC50 are above acceptable levels and there is a need, this study, a refinement in ecotoxicological tests
Resumo:
Agroquímicos são amplamente utilizados na atividade agrícola com o objetivo de aumentar a produção e melhorar a qualidade dos alimentos, no entanto podem vir a gerar danos ao meio ambiente e a organismos não-alvo. Dentre esses pesticidas encontra-se o herbicida glifosato, o qual vem sendo mais utilizado mundialmente. Seu mecanismo de ação se dá através da inibição da enzima 5-enolpiruvilshikimato-3- fosfatosintase, intermediária da síntese de aminoácidos aromáticos essenciais em plantas. Pouco se sabe sobre os efeitos da substância glifosato em animais, pois os estudos realizados visam principalmente os efeitos da formulação comercial, a qual contém surfactantes e outras substâncias inertes. Tendo isso em vista, esse estudo avaliou o efeito do glifosato no teleósteo Danio rerio considerando parâmetros de estresse oxidativo, atividade e expressão da acetilcolinesterase e parâmetros reprodutivos. Foram feitas exposições a 5 mg/L e 10 mg/L de glifosato, mais um grupo controle por 24 e 96 horas, somente com peixes machos. Para análise bioquímica foram retirados cérebro, brânquias e músculo; para análise molecular, cérebro e músculo; e para análise na qualidade espermática dos peixes, os testículos. Quanto às análises bioquímicas houve um aumento na capacidade antioxidante contra radicais peroxil nas brânquias na concentração de 5 mg/L após 24 horas de exposição; uma redução na peroxidação lipídica no cérebro na maior concentração (10 mg/L) após 24h e um aumento da mesma em músculo, também em 10 mg/L, após 96 horas. Não foi observada alteração na geração de espécies reativas de oxigênio decorrente da exposição ao glifosato, assim como na atividade da enzima acetilcolinesterase; já na expressão gênica desta enzima houve uma diminuição no cérebro após 24 horas de exposição e um aumento no cérebro e no músculo após 96 horas. Quanto à qualidade espermática dos peixes, houve uma redução na motilidade e período de motilidade dos espermatozóides nas concentrações de 5 mg/L e 10 mg/L em ambos tempos de exposição; na concentração de 10 mg/L ainda houve uma redução da funcionalidade mitocondrial, integridade de membrana do espermatozóide e integridade de DNA após 24 e 96 horas. Sendo assim, o glifosato se mostrou capaz de alterar o balanço oxidativo dos tecidos do peixe Danio rerio bem como alterar significativamente a expressão gênica da enzima acetilcolinesterase. Além disso, nossos resultados demonstram que o glifosato pode interferir na reprodução deste animal, através da redução de sua qualidade espermática.