982 resultados para algoritmo ripple


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Técnicas de mapeamento digital podem contribuir para agilizar a realização de levantamentos pedológicos detalhados. Objetivou-se com este trabalho obter um mapa digital de solos (MDS) com uso de redes neurais artificiais (RNA), utilizando correlações entre unidades de mapeamento (UM) e covariáveis ambientais. A área utilizada compreendeu aproximadamente 12.000 ha localizados no município de Barra Bonita, SP. A partir do resultado de uma análise de agrupamento das covariáveis ambientais, foram escolhidas cinco áreas de referência para realizar o mapeamento convencional. As UM identificadas subsidiaram a aplicação da técnica de RNA. Utilizaram-se o simulador de redes neurais JavaNNS e o algoritmo de aprendizado backpropagation. Pontos de referência foram coletados para avaliar o desempenho do mapa digital produzido. A posição na paisagem e o material de origem subjacente foram determinantes para o reconhecimento dos delineamentos das UM. Houve boa concordância entre as UM delineadas pelo MDS e pelo método convencional. A comparação entre os pontos de referência e o mapa de solos digital evidenciou exatidão de 72 %. O uso da abordagem MDS utilizada pode contribuir para diminuir a falta de informações semidetalhadas de solos em locais ainda não mapeados, tomando-se como base informações pedológicas obtidas de áreas de referência adjacentes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O mapeamento digital de solos permite prever padrões de ocorrência de solos com base em áreas de referência e no uso de técnicas de mineração de dados para modelar associações solo-paisagem. Os objetivos deste trabalho foram produzir um mapa pedológico digital por meio de técnicas de mineração de dados aplicadas a variáveis geomorfométricas e de geologia, com base em áreas de referência; e testar a confiabilidade desse mapa por meio de validação em campo com diferentes sistemas de amostragem. O mapeamento foi realizado na folha Botucatu (SF-22-Z-B-VI-3), utilizando-se as folhas 1:50.000, Dois Córregos e São Pedro, como áreas de referência. Variáveis descritoras do relevo e de geologia associadas às unidades de mapeamento pedológico das áreas de referência compuseram a matriz de dados de treinamento. A matriz foi analisada pelo algoritmo PART de árvore de decisão, do aplicativo Weka (Waikato Environment for Knowledge Analysis), que cria regras de classificação. Essas regras foram aplicadas aos dados geomorfométricos e geológicos da folha Botucatu, para predição de unidades de mapeamento pedológico. A validação de campo dos mapas digitais deu-se por meio de amostragem por transectos em uma unidade de mapeamento da folha São Pedro e de forma aleatório-estratificada na folha Botucatu. A avaliação da unidade de mapeamento na folha São Pedro verificou confiabilidade, respectivamente, de 83 e 66 %, para os mapas pedológicos digital e tradicional com legenda simplificada. Apesar de terem sido geradas regras para todas as unidades de mapeamento pedológico das áreas de treinamento, nem todas as unidades de mapeamento foram preditas na folha Botucatu, o que resultou das diferenças de relevo e geologia entre as áreas de treinamento e de mapeamento. A validação de campo do mapa digital da folha Botucatu verificou exatidão global de 52 %, compatível com levantamentos em nível de reconhecimento de baixa intensidade, e kappa de 0,41, indicando qualidade Boa. Unidades de mapeamento mais extensas geraram mais regras, resultando melhor reprodução dos padrões solo-relevo na área a ser mapeada. A validação por transectos na folha São Pedro indicou compatibilidade do mapa digital com o nível de reconhecimento de alta intensidade e compatibilidade do mapa tradicional, após simplificação de sua legenda, com o nível de reconhecimento de baixa intensidade. O treinamento do algoritmo em mapas e não em observações pontuais reduziu em 14 % a exatidão do mapa pedológico digital da folha Botucatu. A amostragem aleatório-estratificada pelo hipercubo latino é apropriada a mapeamentos com extensa base de dados, o que permite avaliar o mapa como um todo, tornando os trabalhos de campo mais eficientes. A amostragem em transectos é compatível com a avaliação da pureza de unidades de mapeamento individualmente, não necessitando de base de dados detalhada e permitindo estudos de associações solo-paisagem em pedossequências.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O fósforo destaca-se como um dos nutrientes limitantes ao desenvolvimento da cultura da cana-de-açúcar em solos brasileiros. Esse elemento apresenta grande variabilidade espacial, coordenada pelos atributos que regem as reações de adsorção e dessorção. Estimativas espaciais são conduzidas por meio de interpolações geoestatísticas para a caracterização dessa variabilidade. No entanto, tais estimativas apresentam incertezas inerentes ao procedimento que estão associadas à estrutura de variabilidade do atributo em estudo e à configuração amostral da área. Dessa forma, avaliar a incerteza das predições associada à distribuição espacial do fósforo disponível (Plábil) é importante para otimizar o uso dos fertilizantes fosfatados. O objetivo deste estudo foi avaliar o desempenho da simulação sequencial gaussiana (SSG) e da krigagem ordinária (KO) na modelagem da incerteza das predições do fósforo disponível. Uma malha amostral com 626 pontos foi instalada em uma área experimental de 200 hectares de cana-de-açúcar no município de Tabapuã, São Paulo. Foram geradas 200 realizações por meio do algoritmo da SSG. As realizações da SSG reproduziram as estatísticas e a distribuição dos dados amostrais. A estatística G (0,81) indicou boa proximidade entre as frações dos valores simulados e as dos observados. As realizações da SSG preservaram a variabilidade espacial do Plábil, sem o efeito de suavização obtido pelo mapa da KO. A acurácia na reprodução do variograma dos dados amostrais, obtida pelas realizações da SSG foi, em média, 240 vezes maior que obtida por meio da KO. O mapa de incertezas, obtido por meio da KO, apresentou menor variação na área de estudo do que por SSG. Dessa forma, a avaliação das incertezas, pela SSG, evidenciou-se mais informativa, podendo ser utilizada para definir e delimitar, de forma mais precisa, as áreas de manejo específico.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os modelos preditores usados no mapeamento digital de solos (MDS) precisam ser treinados com dados que captem ao máximo a variação dos atributos do terreno e dos solos, a fim de gerar correlações adequadas entre as variáveis ambientais e a ocorrência dos solos. Para avaliar a acurácia desses modelos, tem sido constatado o uso de diferentes métodos de avaliação da acurácia no MDS. Os objetivos deste estudo foram comparar o uso de três esquemas de amostragem para treinar algoritmo de árvore de classificação (CART) e avaliar a capacidade de predição dos modelos gerados por meio de quatro métodos. Foram utilizados os esquemas de amostragem: aleatório simples; proporcional à área de cada unidade de mapeamento de solos (UM); e estratificado pelo número de UM. Os métodos de avaliação testados foram: aparente, divisão percentual, validação cruzada com 10 subconjuntos e reamostragem com sete conjuntos de dados independentes. As acurácias dos modelos estimadas pelos métodos foram comparadas com as acurácias mensuradas obtidas pela comparação dos mapas gerados, a partir de cada esquema de amostragem, com o mapa convencional de solos na escala 1:50.000. Os esquemas de amostragem influenciaram na quantidade de UMs preditas e na acurácia dos modelos e dos mapas gerados. Os esquemas de amostragem proporcional e estratificada resultaram mapas digitais menos acurados, e a acurácia dos modelos variou conforme o método de avaliação empregado. A amostragem aleatória resultou no mapa digital mais acurado e apresentou valores da acurácia semelhantes para todos os métodos de avaliação testados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo se presentan los resultados derivados de la interpretacón de 320 estaciones gravimétricas realizadas sobre el diapiro de Cardona con el objetivo de obtener información sobre su geometría tridimensional. Para obtener una distribución tridimensional de la masa salina que explique las anomalías observadas se ha aplicado un método iterativo de ajustes sucesivos basado en un algoritmo de inversión automática. Esta metodología ha mostrado ser muy rápida, fácil de usar y con suficiente poder de resolución para perfilar no sólo la geometría del cuerpo salino, sino también la de estructuras similares. El diapiro salino de Cardona presenta un mínimo gravimétrico relacionado con el anticlinal de Pins-Cardona que se prolonga hacia el SW. El análisis cualitativo de la anomalía residual permite apreciar que el diapiro muestra una cierta vergencia hacia sur con un flanco sureste subvertical y un flanco noroeste con pendientes más suaves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo deste trabalho foi o de apresentar o algoritmo de um programa computacional baseado em um método numérico de estimativa de perdas de herbicidas aplicados por pulverização aérea. Este método apresenta como entrada de dados a freqüência de tamanhos das gotas em papéis hidrossensíveis, observadas no gratículo de Porton acoplado ao microscópio. A partir desses valores calcula-se a distribuição acumulada do diâmetro médio do tamanho e do volume das gotas formadas pelo bico de pulverização utilizados na aplicação, conforme metodologia já conhecida. Os dados obtidos para estas curvas de distribuição permitem fazer uso do método numérico de interpolação linear para a obtenção do diâmetro mediano volumétrico e do diâmetro mediano numérico da gota. Estes valores são fundamentais para a determinação da uniformidade de gota. Este método numérico foi implementado em linguagem computacional, permitindo a comparação de valores observados com os encontrados pela interpolação, para papéis espalhados nas faixas de aplicação. É apresentado um exemplo de utilização do programa para placas de papel hidrossensível amostradas em experimento realizado em Pelotas, RS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O modelo estatístico deve exprimir corretamente a estrutura do experimento. Isso é necessário para garantir que os componentes de variância que afetam efeitos referentes a fatores experimentais sejam idênticos aos componentes de variância usados para julgar a significância desses efeitos, exceto pelas próprias variâncias atribuíveis a esses efeitos. O modelo estatístico usualmente formulado ignora a estrutura das unidades que resulta de restrições à casualização. Como conseqüência, propriedades que decorrem da casualização não são apropriadamente levadas em conta, e inferências podem se tornar tendenciosas. Sugere-se um procedimento para identificação dos efeitos referentes à estrutura das unidades, e sua consideração no modelo estatístico e em inferências derivadas do experimento. Em particular, é proposto um algoritmo para a determinação prática dos valores esperados de quadrados médios que levam em conta apropriadamente a estrutura do experimento.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Treball final de carrera basat en el reconeixement de punts clau en imatges mitjançant l'algorisme Random Ferns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo deste trabalho foi utilizar o método Bayesiano no ajuste do modelo de Wood a dados de produção de leite de cabras da raça Saanen. Dois grupos de animais da primeira e segunda lactação foram considerados. Amostras das distribuições marginais a posteriori dos parâmetros do modelo de Wood e das funções de produção derivadas desses parâmetros - pico de produção, tempo do pico de produção, persistência e produção total de leite - foram obtidas pelo algoritmo Gibbs Sampler. As inferências foram feitas em cada população e os resultados mostraram diferenças na taxa de decréscimo da produção após o pico e na persistência, indicando maior produção nos animais de segunda lactação. Realizou-se um estudo de simulação de dados para avaliar o método Bayesiano sob diferentes estruturas de matrizes de covariâncias dos parâmetros. Os resultados desse estudo indicam que o método é eficiente no estudo das curvas de lactação quando a matriz de covariância apresenta alta correlação dos parâmetros.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar a eficiência da aplicação do modelo SEBAL em estimar os fluxos de energia em superfície e a evapotranspiração diária, numa extensa área de cultivo de arroz irrigado, no município de Paraíso do Sul, RS, tendo como parâmetros dados do sensor ASTER. As variáveis estudadas constituem importantes parâmetros do tempo e do clima em estudos agrometeorológicos e de racionalização no uso da água. As metodologias convencionais de estimativa desses parâmetros são pontuais e geralmente apresentam incertezas, que aumentam quando o interesse é o comportamento espacial desses parâmetros. Aplicou-se o algoritmo "Surface Energy Balance Algorithm for Land" (SEBAL), em uma imagem do sensor "Advanced Spaceborne Thermal Emission and Reflection Radiometer" (ASTER). As estimativas obtidas foram comparadas com medições em campo, realizadas por uma estação micrometeorológica localizada no interior da área de estudo. As estimativas mais precisas foram as de fluxo de calor sensível e de evapotranspiração diária, e a estimativa que apresentou maior erro foi a do fluxo de calor no solo. A metodologia empregada foi capaz de reproduzir os fluxos de energia em superfície de maneira satisfatória para estudos agrometeorológicos e de rendimento de culturas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar variáveis discriminantes no mapeamento digital de solos com uso de redes neurais artificiais. Os atributos topográficos elevação, declividade, aspecto, plano de curvatura e índice topográfico, derivados de um modelo digital de elevação, e os índices de minerais de argila, óxido de ferro e vegetação por diferença normalizada, derivados de uma imagem do Landsat7, foram combinados e avaliados quanto à capacidade de discriminação dos solos de uma área no noroeste do Estado do Rio de Janeiro. Foram utilizados o simulador de redes neurais Java e o algoritmo de aprendizado "backpropagation". Os mapas gerados por cada um dos seis conjuntos de variáveis testados foram comparados com pontos de referência, para a determinação da exatidão das classificações. Esta comparação mostrou que o mapa produzido com a utilização de todas as variáveis obteve um desempenho superior (73,81% de concordância) ao de mapas produzidos pelos demais conjuntos de variáveis. Possíveis fontes de erro na utilização dessa abordagem estão relacionadas, principalmente, à grande heterogeneidade litológica da área, que dificultou o estabelecimento de um modelo de correlação ambiental mais realista. A abordagem utilizada pode contribuir para tornar o levantamento de solos no Brasil mais rápido e menos subjetivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar uma nova metodologia para mapeamento da cultura da soja no Estado de Mato Grosso, por meio de imagens Modis e de diferentes abordagens de classificação de imagens. Foram utilizadas imagens diárias e imagens de 16 dias. As imagens diárias foram diretamente classificadas pelo algoritmo Isoseg. As duas séries de imagens de 16 dias, referentes ao ciclo total e à metade do ciclo da cultura da soja, foram transformadas pela análise de componentes principais (ACP), antes de serem classificadas. Dados de referência, obtidos por interpretação visual de imagens do sensor TM/Landsat-5, foram utilizados para a avaliação da exatidão das classificações. Os melhores resultados foram obtidos pela classificação das imagens do ciclo total da soja, transformadas pela ACP: índice global de 0,83 e Kappa de 0,63. A melhor classificação de imagens diárias mostrou índice global de 0,80 e Kappa de 0,55. AACP aplicada às imagens do ciclo total da soja permitiu o mapeamento das áreas de soja com índices de exatidão melhores do que os obtidos pela classificação derivada das imagens de data única.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar parâmetros biofísicos de superfície do Bioma Pantanal com a aplicação de geotecnologias. Foram utilizados o algoritmo Sebal ("surface energy balance algorithm for land"), imagens do sensor Modis ("moderate‑resolution imaging spectroradiometer") e o mapa de classes de uso e cobertura da terra. Os resultados obtidos para NDVI, temperatura da superfície, albedo, fluxo de calor sensível diário, saldo de radiação diário e evapotranspiração real diária foram consistentes com dados de literatura para os diferentes usos e cobertura da terra, e corroboram a eficiência da capacidade analítica e sinóptica das estimativas do Sebal. Tais resultados mostram o potencial de geotecnologias na implementação de modelos ou algoritmos voltados para a compreensão da dinâmica de processos biofísicos de interação solo‑planta‑atmosfera do Pantanal.