995 resultados para Yi Shing
Resumo:
For design-build (DB) projects, owners normally use lump sum and Guaranteed Maximum Price (GMP) as the major contract payment provisions. However, there was a lack of empirical studies to compare the project performance within different contract types and investigate how different project characteristics affect the owners’ selection of contract arrangement. Project information from Design-build Institute of America (DBIA) database was collected to reveal the statistical relationship between different project characteristics and contract types and to compare project performance between lump sum and GMP contract. The results show that lump sum is still the most frequently used contract method for DB projects, especially in the public sector. However, projects using GMP contract are more likely to have less schedule delay and cost overrun as compared to those with lump sum contract. The chi-square tests of cross tabulations reveal that project type, owner type, and procurement method affect the selection of contract types significantly. Civil infrastructure rather than industrial engineering project tends to use lump sum more frequently; and qualification-oriented contractor selection process resorts to GMP more often compared with cost-oriented process. The findings of this research contribute to the current body of knowledge concerning the effect of associated project characteristics on contract type selection. Overall, the results of this study provide empirical evidence from real DB projects that can be used by owners to select appropriate contract types and eventually improve future project performance.
Resumo:
We incorporated a new Riemannian fluid registration algorithm into a general MRI analysis method called tensor-based morphometry to map the heritability of brain morphology in MR images from 23 monozygotic and 23 dizygotic twin pairs. All 92 3D scans were fluidly registered to a common template. Voxelwise Jacobian determinants were computed from the deformation fields to assess local volumetric differences across subjects. Heritability maps were computed from the intraclass correlations and their significance was assessed using voxelwise permutation tests. Lobar volume heritability was also studied using the ACE genetic model. The performance of this Riemannian algorithm was compared to a more standard fluid registration algorithm: 3D maps from both registration techniques displayed similar heritability patterns throughout the brain. Power improvements were quantified by comparing the cumulative distribution functions of the p-values generated from both competing methods. The Riemannian algorithm outperformed the standard fluid registration.
Phase-selective hydrothermal synthesis of Cu2ZnSnS4nanocrystals: The effect of the sulphur precursor
Resumo:
High quality Cu2ZnSnS4 (CZTS) films with uniform thickness and smooth surface were prepared using nanocrystals synthesized by a one-step hydrothermal method. It is found that the nature of the sulphur precursor used in the hydrothermal reaction influences both the compositional purity and the crystal structure of the synthesized hydrothermal product significantly. The CZTS material consisting of both wurtzite and kesterite crystal structures was obtained when using an organic sulfur precursor such as thioacetamide and thiourea in the precursor solution of the hydrothermal reaction while the pure kesterite phase CZTS nanocrystals were made when Na2S was employed as the sulphur precursor. CZTS thin films deposited on a Mo–soda lime glass substrate with uniform thickness (1.7 μm) were made by a simple doctor-blading method. The investigation of the effect of thermal treatment on the film has indicated that the wurtzite CZTS material was completely transformed to the kesterite phase when the material was annealed at 550 °C. Large grains (around 2 μm in size) were found on the surface of the CZTS film which was annealed at 600 °C. The evaluation of the photoresponse of the CZTS thin films has showed that a higher and very stable photocurrent was generated by the film annealed at 600 °C compared to the film annealed at 550 °C.
Resumo:
Sputtering and subsequent sulfurization(orselenization)is one of the methods that have been extensively employed to fabricate Cu2ZnSn(S,Se)4 (CZTSSe) thin films. However, there are limited reports on the effect of precursor stacking order of the sputtered source materials on the properties of the synthesized CZTSSe films. In this work,the morphology and crystallization process of the CZTSSe films which were prepared by selenizing Cu–ZnS–SnS precursor layers with different stacking sequences and the adhesion property between the as-synthesized CZTSSe layer and Mosubstrate have been thoroughly investigated. It has been found that the growth of CZTSSe material and the morphology of the film strongly depend on the location of Culayer in the precursor film. The formation of CZTSSe starts from the diffusion of Cu–Se to Sn(S,Se)layert o form Cu–Sn–(S,Se) compound,followed by the reaction with Zn(S,Se). The investigation of themorphology of the CZTSSe films has shown that large grains are formed in the film with the precursor stacking order of Mo/SnS/ZnS/Cu,which is attributed to a bottom-to-top growth mechanism. In contrast, the film made from a precursor with a stacking sequence of Mo/ZnS/ SnS/Cu is mainly consisted of small grains due to a top-to-bottom growth mechanism. The best CZTSSe solar cell with energy conversion efficiency of3.35%has been achieved with the selenized Mo/ZnS/ SnS/Cu film, which is attributed to a good contact between the absorber layer and the Mosubstrate.
Resumo:
Organic solvents are commonly used in ink precursors of Cu2ZnSnS4 (CZTS) nanocrystals to make thin films for applications such as solar cells. However, the traces of carbon residual left behind by the organic solvents after high-temperature annealing is generally considered to restrict the growth of nanocrystals to form large grains. This work reported the first systematic study on the influence of carbon content of organic solvents on the grain growth of CZTS nanomaterial during high temperature sulfurization annealing. Solvents with carbon atom per molecule varying from 3 to 10 were used to made ink of CZTS nanocrystals for thin film deposition. It has been found that, after high temperature sulfurization annealing, a bilayer structure was formed in the CZTS film using organic solvent containing 3 carbon atoms per solvent molecule based on glycerol and 1,3-propanediol. The top layer consisted of closelypacked large grains and the bottom layer was made of as-synthesized nanoparticles. In contrast, the CZTS film made with the solvent molecule with more carbon atoms including 1,5-pentanediol (5 carbon atoms) and 1,7-heptanediol (7 carbon atoms) consisted of nanoparticles embedded with large crystals. It is believed that the carbon residues left behind by the organic solvents affected the necking of CZTS nanocrystals to form large grains through influencing the surface property of nanocrystals. Furthermore, it has also been observed that the solvent affected the thickness of MoS2 layer which was formed between CZTS and Mo substrate. A thinner MoS2 film (50 nm) was obtained with the slurry using carbon-rich terpineol as solvent whereas the thickest MoS2 (350 nm) was obtained with the film made from 1,3-propanediol based solvent. The evaluation of the photoactivity of the CZTS thin films has demonstrated that a higher photocurrent was generated with the film containing more large grains.
Resumo:
In this study, effects of concentrations of Cu(II), Zn(II) and Sn(II) ions in the electrolytic bath solution on the properties of electrochemically deposited CuZnSn (CZT) films were investigated. Study of the composition of a CZT film has shown that the metallic content (relative atomic ratio) in the film increased linearly with increase in the metal ion concentration. It is the first time that the relationship of the compositions of the alloy phases in the co-electrodeposited CZT film with the concentration of metal ions has been revealed. The results have confirmed that the formation and content of Cu6Sn5 and Cu5Zn8 alloy phases in the film were directly controlled by the concentration of Cu(II). SEM measurements have shown that Sn(II) has significant impact on film morphology, which became more porous as a result of the larger nucleation size of tin. The changes in the surface properties of the films was also confirmed by chronoamperometry characteristic (i–t) deposition curves. By optimization of metal ion concentrations in the electrolyte solution, a copper-poor and zinc-rich kesterite Cu2ZnSnS4 (CZTS) film was synthesized by the sulfurization of the deposited CZT film. The solar cell with the CZTS film showed an energy conversion efficiency of 2.15% under the illumination intensity of 100 mW cm 2.
Resumo:
A number of coating materials have been developed over past two decades seeking to improve the osseointegration of orthopedic metal implants. Despite the many candidate materials trialed, their low rate of translation into clinical applications suggests there is room for improving the current strategies for their development. We therefore propose that the ideal coating material(s) should possess the following three properties: (i) high bonding strength, (ii) release of functional ions, and (iii) favourable osteoimmunomodulatory effects. To test this proposal, we developed clinoenstatite (CLT, MgSiO3), which as a coating material has high bonding strength, cytocompability and immunomodulatory effects that are favourable for in vivo osteogenesis. The bonding strength of CLT coatings was 50.1 ± 3.2 MPa, more than twice that of hydroxyapatite (HA) coatings, at 23.5 ± 3.5 MPa. CLT coatings released Mg and Si ions, and compared to HA coatings, induced an immunomodulation more conducive for osseointegration, demonstrated by downregurelation of pro-inflammatory cytokines, enhancement of osteogenesis, and inhibition of osteoclastogenesis. In vivo studies demonstrated that CLT coatings improved osseointegration with host bone, as shown by the enhanced biomechanical strength and increased de novo bone formation, when compared with HA coatings. These results support the notion that coating materials with the proposed properties can induce an in vivo environment better suited for osseointegration. These properties could, therefore, be fundamental when developing high-performance coating materials.
Resumo:
Distributed systems are widely used for solving large-scale and data-intensive computing problems, including all-to-all comparison (ATAC) problems. However, when used for ATAC problems, existing computational frameworks such as Hadoop focus on load balancing for allocating comparison tasks, without careful consideration of data distribution and storage usage. While Hadoop-based solutions provide users with simplicity of implementation, their inherent MapReduce computing pattern does not match the ATAC pattern. This leads to load imbalances and poor data locality when Hadoop's data distribution strategy is used for ATAC problems. Here we present a data distribution strategy which considers data locality, load balancing and storage savings for ATAC computing problems in homogeneous distributed systems. A simulated annealing algorithm is developed for data distribution and task scheduling. Experimental results show a significant performance improvement for our approach over Hadoop-based solutions.
Resumo:
The requirement of distributed computing of all-to-all comparison (ATAC) problems in heterogeneous systems is increasingly important in various domains. Though Hadoop-based solutions are widely used, they are inefficient for the ATAC pattern, which is fundamentally different from the MapReduce pattern for which Hadoop is designed. They exhibit poor data locality and unbalanced allocation of comparison tasks, particularly in heterogeneous systems. The results in massive data movement at runtime and ineffective utilization of computing resources, affecting the overall computing performance significantly. To address these problems, a scalable and efficient data and task distribution strategy is presented in this paper for processing large-scale ATAC problems in heterogeneous systems. It not only saves storage space but also achieves load balancing and good data locality for all comparison tasks. Experiments of bioinformatics examples show that about 89\% of the ideal performance capacity of the multiple machines have be achieved through using the approach presented in this paper.
Resumo:
Vertebral fracture risk is a heritable complex trait. The aim of this study was to identify genetic susceptibility factors for osteoporotic vertebral fractures applying a genome-wide association study (GWAS) approach. The GWAS discovery was based on the Rotterdam Study, a population-based study of elderly Dutch individuals aged >55years; and comprising 329 cases and 2666 controls with radiographic scoring (McCloskey-Kanis) and genetic data. Replication of one top-associated SNP was pursued by de-novo genotyping of 15 independent studies across Europe, the United States, and Australia and one Asian study. Radiographic vertebral fracture assessment was performed using McCloskey-Kanis or Genant semi-quantitative definitions. SNPs were analyzed in relation to vertebral fracture using logistic regression models corrected for age and sex. Fixed effects inverse variance and Han-Eskin alternative random effects meta-analyses were applied. Genome-wide significance was set at p<5×10-8. In the discovery, a SNP (rs11645938) on chromosome 16q24 was associated with the risk for vertebral fractures at p=4.6×10-8. However, the association was not significant across 5720 cases and 21,791 controls from 14 studies. Fixed-effects meta-analysis summary estimate was 1.06 (95% CI: 0.98-1.14; p=0.17), displaying high degree of heterogeneity (I2=57%; Qhet p=0.0006). Under Han-Eskin alternative random effects model the summary effect was significant (p=0.0005). The SNP maps to a region previously found associated with lumbar spine bone mineral density (LS-BMD) in two large meta-analyses from the GEFOS consortium. A false positive association in the GWAS discovery cannot be excluded, yet, the low-powered setting of the discovery and replication settings (appropriate to identify risk effect size >1.25) may still be consistent with an effect size <1.10, more of the type expected in complex traits. Larger effort in studies with standardized phenotype definitions is needed to confirm or reject the involvement of this locus on the risk for vertebral fractures.
Resumo:
The rapid increase in migration into host countries and the growth of immigrant-owned business enterprises has revitalized research on ethnic business. Does micro (individual)-level social capital, or meso (group)-level location within the ethnic enclave lead to immigrant business growth? Or do you need both? We analyze quantitative data collected from 110 Chinese restaurants in Australia, a major host country. At the micro level we find that coethnic (same ethnic group) networks are critical to the growth of an immigrant entrepreneur's business, particularly in the early years. But non-coethnic (different ethnic group) social capital only has a positive impact on business growth for immigrant businesses outside the ethnic enclave. Our findings are relevant, not only to host-country policymakers, but also for future immigrant business owners and ethnic community leaders trying to better understand how to promote healthy communities and sustainable economic growth.
Resumo:
Since 2003, Mainland China has been promoting the public–private partnership (PPP) procurement model in the waste-to-energy incineration sector to reduce the waste burying rate and improve environmental quality. Five critical risk factors (CRFs) that affect the construction and operation of waste-to-energy incineration projects have been identified from real-life risk events of 14 PPP waste-to-energy incineration plants through content analysis. These risk factors are insufficient waste supply, disposal of non-licensed waste, environmental risk, payment risk, and lack of supporting infrastructure. A recently completed PPP waste-to-energy incineration plant, the Shanghai Tianma project, was investigated to learn from the effective management of CRFs. First-hand data about the Shanghai Tianma project was collected, with a focus on project negotiation and concession agreement. Lessons learned about risk management were acquired. This paper presents a detailed study of the contractual structure, risk sharing scheme, risk response measures to CRFs, and project transfer of a PPP project. The study results will provide governments with management implications to prepare equitable concession agreements and benefit private investors by effectively mitigating and managing risks in future PPP waste-to-energy incineration projects.
Resumo:
Background Hemorrhagic fever with renal syndrome (HFRS) is a rodent-borne disease caused by many serotypes of hantaviruses. In China, HFRS has been recognized as a severe public health problem with 90% of the total reported cases in the world. This study describes the spatiotemporal dynamics of HFRS cases in China and identifies the regions, time, and populations at highest risk, which could help the planning and implementation of key preventative measures. Methods Data on all reported HFRS cases at the county level from January 2005 to December 2012 were collected from Chinese Center for Disease Control and Prevention. Geographic Information System-based spatiotemporal analyses including Local Indicators of Spatial Association and Kulldorff's space-time scan statistic were performed to detect local high-risk space-time clusters of HFRS in China. In addition, cases from high-risk and low-risk counties were compared to identify significant demographic differences. Results A total of 100,868 cases were reported during 2005–2012 in mainland China. There were significant variations in the spatiotemporal dynamics of HFRS. HFRS cases occurred most frequently in June, November, and December. There was a significant positive spatial autocorrelation of HFRS incidence during the study periods, with Moran's I values ranging from 0.46 to 0.56 (P<0.05). Several distinct HFRS cluster areas were identified, mainly concentrated in northeastern, central, and eastern of China. Compared with cases from low-risk areas, a higher proportion of cases were younger, non-farmer, and floating residents in high-risk counties. Conclusions This study identified significant space-time clusters of HFRS in China during 2005–2012 indicating that preventative strategies for HFRS should be particularly focused on the northeastern, central, and eastern of China to achieve the most cost-effective outcomes.
Resumo:
Background: Studies have examined the effects of temperature on mortality in a single city, country, or region. However, less evidence is available on the variation in the associations between temperature and mortality in multiple countries, analyzed simultaneously. Methods: We obtained daily data on temperature and mortality in 306 communities from 12 countries/regions (Australia, Brazil, Thailand, China, Taiwan, Korea, Japan, Italy, Spain, United Kingdom, United States, and Canada). Two-stage analyses were used to assess the nonlinear and delayed relation between temperature and mortality. In the first stage, a Poisson regression allowing overdispersion with distributed lag nonlinear model was used to estimate the community-specific temperature-mortality relation. In the second stage, a multivariate meta-analysis was used to pool the nonlinear and delayed effects of ambient temperature at the national level, in each country. Results: The temperatures associated with the lowest mortality were around the 75th percentile of temperature in all the countries/regions, ranging from 66th (Taiwan) to 80th (UK) percentiles. The estimated effects of cold and hot temperatures on mortality varied by community and country. Meta-analysis results show that both cold and hot temperatures increased the risk of mortality in all the countries/regions. Cold effects were delayed and lasted for many days, whereas heat effects appeared quickly and did not last long. Conclusions: People have some ability to adapt to their local climate type, but both cold and hot temperatures are still associated with increased risk of mortality. Public health strategies to alleviate the impact of ambient temperatures are important, in particular in the context of climate change.
Resumo:
The Codex Alimentarius Commission of the Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO) develops food standards, guidelines and related texts for protecting consumer health and ensuring fair trade practices globally. The major part of the world's population lives in more than 160 countries that are members of the Codex Alimentarius. The Codex Standard on Infant Formula was adopted in 1981 based on scientific knowledge available in the 1970s and is currently being revised. As part of this process, the Codex Committee on Nutrition and Foods for Special Dietary Uses asked the ESPGHAN Committee on Nutrition to initiate a consultation process with the international scientific community to provide a proposal on nutrient levels in infant formulae, based on scientific analysis and taking into account existing scientific reports on the subject. ESPGHAN accepted the request and, in collaboration with its sister societies in the Federation of International Societies on Pediatric Gastroenterology, Hepatology and Nutrition, invited highly qualified experts in the area of infant nutrition to form an International Expert Group (IEG) to review the issues raised. The group arrived at recommendations on the compositional requirements for a global infant formula standard which are reported here.