991 resultados para Whole Sugarcane Crop
Resumo:
The requirements for metrology of magnetostriction in complex multilayers and on whole wafers present challenges. An elegant technique based on radius of curvature deformation of whole wafers in a commercial metrology tool is described. The method is based on the Villari effect through application of strain to a film by introducing a radius of curvature. Strain can be applied tensilely and compressively depending on the material. The design, while implemented on 3'' wafers, is scalable. The approach removes effects arising from any shape anisotropy that occurs with smaller samples, which can lead to a change in magnetic response. From the change in the magnetic anisotropy as a function of the radius, saturation magnetostriction ?s can be determined. Dependence on film composition and film thickness was studied to validate the radius of curvature approach with other techniques. ?s decreases from positive values to negative values through an increase in Ni concentration around the permalloy composition, and ?s also increases with a decrease in film thickness, in full agreement with previous reports. We extend the technique by demonstrating the technique applied to a multi-layered structure. These results verify the validity of the method and are an important step to facilitate further work in understanding how manipulation of multilayered films can offer tailored magnetostriction.
Resumo:
Two porous metal organic frameworks (MOFs), [M-2(C8H2O6)(H2O)(2)] center dot 8H(2)O (M = Co, Ni), perform exceptionally well for the adsorption, storage, and water-triggered delivery of the biologically important gas nitric oxide. Adsorption and powder X-ray diffraction studies indicate that each coordinatively unsaturated metal atom in the structure coordinates to one NO molecule. All of the stored gas is available for delivery even after the material has been stored for several months. The combination of extremely high adsorption capacity (similar to 7 mmol of NO/g of MOF) and good storage stability is ideal for the preparation of NO storage solids. However, most important is that the entire reservoir of stored gas is recoverable on contact with a simple trigger (moisture). The activity of the NO storage materials is proved in myography experiments showing that the NO-releasing MOFs cause relaxation of porcine arterial tissue.
Resumo:
Districts are an important unit for administrative purposes, but they vary little in their impact on students’ attainment, at least in the UK. Further, government attempts to raise attainment are often disappointing. The project described in this article aimed to engage schools in reform to change students’ attainment and attitudes in schools across a whole district. The intervention, peer tutoring, has a good research pedigree in small-scale studies, but scaling it up to district-level implementation has not been rigorously evaluated. Over 2 years, 129 elementary schools in 1 Scottish district were randomly assigned to different interventions. The implementation was not perfect, but the results were positive with respect to cross-age tutoring, which had effect sizes of about 0.2. Despite limitations, the study demonstrates that it is possible to carry out a clustered randomized controlled trial (RCT) on a large scale working with districts and suggests that peer tutoring has promise when scaled up.
Resumo:
The use of the organic fraction of municipal solid waste crops has received considerable attention as a sustainable feedstock that can replace fossil fuels for the production of renewable energy. Therefore, municipal bin-waste in the form of hay was investigated as a potential energy crop for fermentable sugars production. Hydrolysis of hay by dilute phosphoric acid was carried out in autoclave parr reactor, where reactor temperature (135-200 degrees c) and acid concentration (2.5-10% (w/w)) were examined. Analysis of the decomposition rate of hemicellulosic biomass was undertaken using HPLC of the reaction products. Xylose production reached a maximum value of 13.5 g/100 g dry mass corresponding to a yield of 67% at the best identified conditions of 2.5 wt% H3PO4, 175 degrees C, 10 min reaction time, and at 5 wt% H3PO4, 150 degrees C, and 5 min reaction time. For glucose, an average yield of 25% was obtained at 5 wt% H3PO4, 175 degrees C and 30 min. Glucose degradation to HMF was achieved at 10 wt% H3PO4 and 200 degrees C. The maximum yield for produced arabinose was an average of 3 g/100 g dry. mass corresponding to 100% of the total possible arabinose. The kinetic study of the acid hydrolysis was also carried out using the Saeman and the Two-fraction models. It was found for both models that the kinetic constants (k) depend on the acid concentration and temperature. For xylose and arabinose it was found that the rate of formation was more favoured than the rate of degradation. By contrast, for glucose it was found that glucose degradation was occurring faster than glucose formation. It can be concluded that dilute phosphoric acid hydrolysis of hay crop is feasible for the production of fermentable sugars which are essential for bioethanol synthesis.
Resumo:
To explore current awareness and perceptions of whole grain foods and perceived barriers and facilitators of whole grain consumption.
Resumo:
Background: Barrett's oesophagus (BO) is a well recognized precursor of the majority of cases of oesophageal adenocarcinoma (OAC). Endoscopic surveillance of BO patients is frequently undertaken in an attempt to detect early OAC, high grade dysplasia (HGD) or low grade dysplasia (LGD). However histological interpretation and grading of dysplasia is subjective and poorly reproducible. The alternative flow cytometry and cytology-preparation image cytometry techniques require large amounts of tissue and specialist expertise which are not widely available for frontline health care.
Methods: This study has combined whole slide imaging with DNA image cytometry, to provide a novel method for the detection and quantification of abnormal DNA contents. 20 cases were evaluated, including 8 Barrett's specialised intestinal metaplasia (SIM), 6 LGD and 6 HGD. Feulgen stained oesophageal sections (1µm thickness) were digitally scanned in their entirety and evaluated to select regions of interests and abnormalities. Barrett’s mucosa was then interactively chosen for automatic nuclei segmentation where irrelevant cell types are ignored. The combined DNA content histogram for all selected image regions was then obtained. In addition, histogram measurements, including 5c exceeding ratio (xER-5C), 2c deviation index (2cDI) and DNA grade of malignancy (DNA-MG), were computed.
Results: The histogram measurements, xER-5C, 2cDI and DNA-MG, were shown to be effective in differentiating SIM from HGD, SIM from LGD, and LGD from HGD. All three measurements discriminated SIM from HGD cases successfully with statistical significance (pxER-5C=0.0041, p2cDI=0.0151 and pDNA-MG=0.0057). Statistical significance is also achieved differentiating SIM from LGD samples with pxER-5C=0.0019, p2cDI=0.0023 and pDNA-MG=0.0030. Furthermore the differences between LGD and HGD cases are statistical significant (pxER-5C=0.0289, p2cDI=0.0486 and pDNA-MG=0.0384).
Conclusion: Whole slide image cytometry is a novel and effective method for the detection and quantification of abnormal DNA content in BO. Compared to manual histological review, this proposed method is more objective and reproducible. Compared to flow cytometry and cytology-preparation image cytometry, the current method is low cost, simple to use and only requires a single 1µm tissue section. Whole slide image cytometry could assist the routine clinical diagnosis of dysplasia in BO, which is relevant for future progression risk to OAC.
Resumo:
Hybrid vehicles can use energy storage systems to disconnect the engine from the driving wheels of the vehicle. This enables the engine to be run closer to its optimum operating condition, but fuel energy is still wasted through the exhaust system as heat. The use of a turbogenerator on the exhaust line addresses this problem by capturing some of the otherwise wasted heat and converting it into useful electrical energy.
This paper outlines the work undertaken to model the engine of a diesel-electric hybrid bus, coupled with a hybrid powertrain model which analysed the performance of a hybrid vehicle over a drive-cycle. The distribution of the turbogenerator power was analysed along with the effect on the fuel consumption of the bus. This showed that including the turbogenerator produced a 2.4% reduction in fuel consumption over a typical drive-cycle.
The hybrid bus generator was then optimised to improve the performance of the combined vehicle/engine package and the turbogenerator was then shown to offer a 3.0% reduction in fuel consumption. The financial benefits of using the turbogenerator were also considered in terms of fuel savings for operators. For an average bus, a turbogenerator could reduce fuel costs by around £1200 per year.
Resumo:
Fibre-Reinforced Plastics (FRPs) have been used in civil aerospace vehicles for decades. The current state-of-the-art in airframe design and manufacture results in approximately half the airframe mass attributable to FRP materials. The continual increase in the use of FRP materials over metallic alloys is attributable to the material's superior specific strength and stiffness, fatigue performance and corrosion resistance. However, the full potential of these materials has yet to be exploited as analysis methods to predict physical failure with equal accuracy and robustness are not yet available. The result is a conservative approach to design, but one that can bring benefit via increased inspection intervals and reduced cost over the vehicle life. The challenge is that the methods used in practice are based on empirical tests and real relationships and drivers are difficult to see in this complex process and so the trade-off decision is challenging and uncertain. The aim of this feasibility study was to scope a viable process which could help develop some rules and relationships based on the fundamental mechanics of composite material and the economics of production and operation, which would enhance understanding of the role and impact of design allowables across the life of a composite structure.
Resumo:
Accessing chirally pure cis-diols from arenes using micro-organisms over-expressing toluene dioxygenase (TDO) is now well established, but the conversions remain low for the more toxic and volatile substrates. For such arenes, improved production has already been achieved in the presence of hydrophobic non-toxic ionic liquids (ILs) acting in the form of a reservoir for the arene substrate. Yet, the costs associated with such ILs require extensive process development to render them viable. Herein, we show that optimization of the hydrophobic IL's cationic moiety and of the IL's concentration are key to enhanced conversion yielding between a 2-5 fold yield increase in the conversion of four haloarenes (Ph-X; X = F, Cl, Br, I). Additionally, we report that hydrophilic imidazolium-based ILs offer opportunities to achieve similarly high yielding biotransformations, with further improved reaction rates (<6 h), and this at very low ILs' concentrations (0.0015 VIL/Vaq). We also demonstrate that the increased biotransformations are due to these ILs being inhibitors of cellular respiration processes and thus favoring the shunting of NADH and O2 towards the overexpressed biocatalytic process. © 2014 the Partner Organisations.
Resumo:
Traditionally, the optimization of a turbomachinery engine casing for tip clearance has involved either twodimensional transient thermomechanical simulations or three-dimensional mechanical simulations. This paper illustrates that three-dimensional transient whole-engine thermomechanical simulations can be used within tip clearance optimizations and that the efficiency of such optimizations can be improved when a multifidelity surrogate modeling approach is employed. These simulations are employed in conjunction with a rotor suboptimization using surrogate models of rotor-dynamics performance, stress, mass and transient displacements, and an engine parameterization.
Resumo:
Purpose:The aim of this study was to determine whether mutations in mitochondrial DNA play a role in high-pressure primary open-angle glaucoma (OMIM 137760) by analyzing new data from massively parallel sequencing of mitochondrial DNA.
Methods:Glaucoma patients with high-tension primary open-angle glaucoma and ethnically matched and age-matched control subjects without glaucoma were recruited. The entire human mitochondrial genome was amplified in two overlapping fragments by long-range polymerase chain reaction and used as a template for massively parallel sequencing on an Ion Torrent Personal Genome Machine. All variants were confirmed by conventional Sanger sequencing.
Results:Whole-mitochondrial genome sequencing was performed in 32 patients with primary open-angle glaucoma from India (n = 16) and Ireland (n = 16). In 16 of the 32 patients with primary open-angle glaucoma (50% of cases), there were 22 mitochondrial DNA mutations consisting of 7 novel mutations and 8 previously reported disease-associated sequence variants. Eight of 22 (36.4%) of the mitochondrial DNA mutations were in complex I mitochondrial genes.
Conclusion:Massively parallel sequencing using the Ion Torrent Personal Genome Machine with confirmation by Sanger sequencing detected a pathogenic mitochondrial DNA mutation in 50% of the primary open-angle glaucoma cohort. Our findings support the emerging concept that mitochondrial dysfunction results in the development of glaucoma and, more specifically, that complex I defects play a significant role in primary open-angle glaucoma pathogenesis.