903 resultados para Unmanned Aerial Vehicles (UAVs)
Resumo:
Electric vehicles (EV) do not emit tailpipe exhaust fumes in the same manner as internal combustion engine vehicles. Optimal benefits can only be achieved, if EVS are deployed effectively, so that the tailpipe emissions are not substituted by additional emissions in the electricity sector. This paper examines the potential contributions that Plug in Hybrid Electric Vehicles can make in reducing carbon dioxide. The paper presents the results of the generation expansion model for Northern Ireland and the Republic of Ireland built using the dynamic programming based long term generation expansion planning tool called the Wien Automatic System Planning IV tool. The model optimizes power dispatch using hourly electricity demand curves for each year up to 2020, while incorporating generator characteristics and certain operational requirements such as energy not served and loss of load probability while satisfying constraints on environmental emissions, fuel availability and generator operational and maintenance costs. In order to simulate the effect of PHEV, two distinct charging scenarios are applied based on a peak tariff and an off peak tariff. The importance and influence of the charging regime on the amount of energy used and gaseous emissions displaced is determined and discussed.
Resumo:
Over recent years, a number of marine autopilots designed using linear techniques have underperformed owing to their inability to cope with nonlinear vessel dynamics. To this end, a new design framework for the development of nonlinear autopilots is proposed herein. Local control networks (LCNs) can be used in the design of nonlinear control systems. In this paper, a LCN approach is taken in the design of a nonlinear autopilot for controlling the nonlinear yaw dynamics of an unmanned surface vehicle known as Springer. It is considered the approach is the first of its kind to be used in marine control systems design. Simulation results are presented and the performance of the nonlinear autopilot is compared with that of an existing Springer linear quadratic Gaussian (LQG) autopilot using standard system performance criteria. From the results it can be concluded the LCN autopilot out performed that based on LQG techniques in terms of the selected criteria. Also it provided more energy saving control strategies and would thereby increase operational duration times for the vehicle during real-time missions.
Resumo:
EU Directive 2009/28/EC on Renewable Energy requires each Member State to ensure 10% of transport energy (excluding aviation and marine transport) comes from renewable sources by 2020 (10% RES-T target). In addition to the anticipated growth in biofuels, this target is expected to be met by the increased electrification of transport coupled with a growing contribution from renewable energy to electricity generation. Energy use in transport accounted for nearly half of Ireland’s total final energy demand and about a third of energy-related carbon dioxide emissions in 2007. Energy use in transport has grown by 6.3% per annum on average in the period 1990 – 2007. This high share and fast growth relative to other countries highlights the challenges Ireland faces in meeting ambitious renewable energy targets. The Irish Government has set a specific target for Electric Vehicles (EV) as part of its strategy to deliver the 10% RES-T target. By 2020, 10% of all vehicles in its transport fleet are to be powered by electricity. This paper quantifies the impacts on energy and carbon dioxide emissions of this 10% EV target by 2020. In order to do this an ‘EV Car Stock’ model was developed to analyse the historical and future make-up of the passenger car portion of the fleet to 2025. Three scenarios for possible take-up in EVs were examined and the associated energy and emissions impacts are quantified. These impacts are then compared to Ireland’s 10% RES-T target and greenhouse gas (GHG) emissions reduction targets for 2020. Two key findings of the study are that the 10% EV target contributes 1.7% to the 10% RES-T target by 2020 and 1.4% to the 20% reduction in Non-ETS emissions by 2020 relative to 2005.
Resumo:
The European Union has set a target for 10% renewable energy in transport by 2020, which will be met using both biofuels and electric vehicles. In the case of biofuels, for the purposes of meeting the target, the biofuel must achieve greenhouse gas savings of 35% relative to the fossil fuel replaced. For biofuels, greenhouse gas savings can be calculated using life cycle analysis, or the European Union default values. In contrast, all electricity used in transport is considered to be the same, regardless of the source or the type of electric vehicle. However, the choice of the electric vehicle and electricity source will have a major impact on the greenhouse gas savings. This paper examines different electric-vehicle scenarios in terms of greenhouse gas savings, using a well-to-wheel life cycle analysis.
Resumo:
In late 2008, the Government of the Republic of Ireland set a specific target that 10% of all vehicles in its transport fleet be powered by electricity by 2020 in order to meet European Union renewable energy targets and greenhouse gas emissions reduction targets. International there are similar targets. This is a considerable challenge as in 2009, transport accounted for 29% of non-emissions trading scheme greenhouse gas emissions, 32% of energy-related greenhouse gas emissions, 21% of total greenhouse gas emissions and approximately 50% of energy-related non-emission trading scheme greenhouse gas emissions. In this paper the impacts of 10% electric vehicle charging on the single wholesale electricity market for the Republic of Ireland and Northern Ireland is examined. The energy consumed and the total carbon dioxide emissions generated under different charging scenarios is quantified and the results of the charging scenarios are compared to identify the best implementation strategy.
Resumo:
A micro-grid is an autonomous system which can be operated and connected to an external system or isolated with the help of energy storage systems (ESSs). While the daily output of distributed generators (DGs) strongly depends on the temporal distribution of natural resources such as wind and solar, unregulated electric vehicle (EV) charging demand will deteriorate the imbalance between the daily load and generation curves. In this paper, a statistical model is presented to describe daily EV charging/discharging behaviour. An optimisation problem is proposed to obtain economic operation for the micro-grid based on this model. In day-ahead scheduling, with estimated information of power generation and load demand, optimal charging/discharging of EVs during 24 hours is obtained. A series of numerical optimization solutions in different scenarios is achieved by serial quadratic programming. The results show that optimal charging/discharging of EVs, a daily load curve can better track the generation curve and the network loss and required ESS capacity are both decreased. The paper also demonstrates cost benefits for EVs and operators.
Integrating Multiple Point Statistics with Aerial Geophysical Data to assist Groundwater Flow Models
Resumo:
The process of accounting for heterogeneity has made significant advances in statistical research, primarily in the framework of stochastic analysis and the development of multiple-point statistics (MPS). Among MPS techniques, the direct sampling (DS) method is tested to determine its ability to delineate heterogeneity from aerial magnetics data in a regional sandstone aquifer intruded by low-permeability volcanic dykes in Northern Ireland, UK. The use of two two-dimensional bivariate training images aids in creating spatial probability distributions of heterogeneities of hydrogeological interest, despite relatively ‘noisy’ magnetics data (i.e. including hydrogeologically irrelevant urban noise and regional geologic effects). These distributions are incorporated into a hierarchy system where previously published density function and upscaling methods are applied to derive regional distributions of equivalent hydraulic conductivity tensor K. Several K models, as determined by several stochastic realisations of MPS dyke locations, are computed within groundwater flow models and evaluated by comparing modelled heads with field observations. Results show a significant improvement in model calibration when compared to a simplistic homogeneous and isotropic aquifer model that does not account for the dyke occurrence evidenced by airborne magnetic data. The best model is obtained when normal and reverse polarity dykes are computed separately within MPS simulations and when a probability threshold of 0.7 is applied. The presented stochastic approach also provides improvement when compared to a previously published deterministic anisotropic model based on the unprocessed (i.e. noisy) airborne magnetics. This demonstrates the potential of coupling MPS to airborne geophysical data for regional groundwater modelling.