980 resultados para Ultraviolet visible spectroscopy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article summarizes the basic principles of Fourier Transform Infrared Spectroscopy, with examples of methodologies and applications to different field sciences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article summarizes the basic principles of photoelectron spectroscopy for surface analysis, with examples of applications in material science that illustrate the capabilities of the related techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work we review the way in which the electron-matter interaction allows us to perform electron energy loss spectroscopy (EELS), as well as the latest developments in the technique and some of the most relevant results of EELS as a characterization tool in nanoscience and nanotechnology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vivo 13C NMR spectroscopy has the unique capability to measure metabolic fluxes noninvasively in the brain. Quantitative measurements of metabolic fluxes require analysis of the 13C labeling time courses obtained experimentally with a metabolic model. The present work reviews the ingredients necessary for a dynamic metabolic modeling study, with particular emphasis on practical issues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cutaneous squamous cell carcinoma (SCC) represents the most important cutaneous complication following organ transplantation. It develops mostly on sun-exposed areas. A recent study showed the role of activating transcription factor 3 (ATF3) in SCC development following treatment with calcineurin inhibitors. It has been reported that ATF3, which may act as an oncogene, is under negative calcineurin/nuclear factor of activated T cells (NFAT) control and is upregulated by calcineurin inhibitors. Still, these findings do not fully explain the preferential appearance of SCC on chronically sun-damaged skin. We analyzed the influence of UV radiation on ATF3 expression and its potential role in SCC development. We found that ATF3 is a specifically induced AP1 member in SCC of transplanted patients. Its expression was strongly potentiated by combination of cyclosporine A and UVA treatment. UVA induced ATF3 expression through reactive oxygen species-mediated nuclear factor erythroid 2-related factor 2 (NRF2) activation independently of calcineurin/NFAT inhibition. Activated NRF2 directly binds to ATF3 promoter, thus inducing its expression. These results demonstrate two mechanisms that independently induce and, when combined together, potentiate the expression of ATF3, which may then force SCC development. Taking into account the previously defined role of ATF3 in the SCC development, these findings may provide an explanation and a mechanism for the frequently observed burden on SCCs on sun-exposed areas of the skin in organ transplant recipients treated by calcineurin inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective was to design a vascular phantom compatible with digital subtraction angiography, computerized tomography angiography, ultrasound and magnetic resonance angiography (MRA). Fiducial markers were implanted at precise known locations in the phantom to facilitate identification and orientation of plane views from three-dimensional (3-D) reconstructed images. A vascular conduit connected to tubing at the extremities of the phantom ran through an agar-based gel filling it. A vessel wall in latex was included around the conduit to avoid diffusion of contrast agents. Using a lost-material casting technique based on a low melting point metal, geometries of pathological vessels were modeled. During the experimental testing, fiducial markers were detectable in all modalities without distortion. No leak of gadolinium through the vascular wall was observed on MRA after 5 hours. Moreover, no significant deformation of the vascular conduit was noted during the fabrication process (confirmed by microtome slicing along the vessel). The potential use of the phantom for calibration, rescaling, and fusion of 3-D images obtained from the different modalities as well as its use for the evaluation of intra- and inter-modality comparative studies of imaging systems are discussed. In conclusion, the vascular phantom can allow accurate calibration of radiological imaging devices based on x-ray, magnetic resonance and ultrasound and quantitative comparisons of the geometric accuracy of the vessel lumen obtained with each of these methods on a given well defined 3-D geometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The availability and the reserves of organic phosphorus are controlled by its mineralization rate and are also influenced by changes in soil management. The objective of this study was to evaluate the influence of soil covering with different leguminous plant on soil organic P by 31P-NMR spectroscopy. Alkaline soil extracts were obtained from two depths (0-5 and 5-10 cm) of an Ultisol cultivated with herbaceous perennial leguminous plants (Arachis pintoi, Pueraria phaseoloides, Macroptilium atropurpureum). In an adjacent area, samples of the same soil cover with a secondary tropical forest and grass (Panicum maximum) were also collected. The leguminous management was divided into with removal and without removal of shoot parts after cut on soil surface. Phosphate monoesters are the dominant P species in all soil samples and P diesters accumulated on the superficial layer of secondary forest soil. The P amount of this fraction is higher for the legume covered soil when compared with the grass covered soil. The permanence of leguminous plants on the topsoil after the cut promoted an increase in P diester/P monoester ratios. These findings can be accounted for an enhancement of P availability to plants in soils cultivated with leguminous plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite obvious improvements in spectral resolution at high magnetic field, the detection of 13C labeling by 1H-[13C] NMR spectroscopy remains hampered by spectral overlap, such as in the spectral region of 1H resonances bound to C3 of glutamate (Glu) and glutamine (Gln), and C6 of N-acetylaspartate (NAA). The aim of this study was to develop, implement, and apply a novel 1H-[13C] NMR spectroscopic editing scheme, dubbed "selective Resonance suppression by Adiabatic Carbon Editing and Decoupling single-voxel STimulated Echo Acquisition Mode" (RACED-STEAM). The sequence is based on the application of two asymmetric narrow-transition-band adiabatic RF inversion pulses at the resonance frequency of the 13C coupled to the protons that need to be suppressed during the mixing time (TM) period, alternating the inversion band downfield and upfield from the 13C resonance on odd and even scans, respectively, thus suppressing the detection of 1H resonances bound to 13C within the transition band of the inversion pulse. The results demonstrate the efficient suppression of 1H resonances bound to C3 of Glu and Gln, and C4 of Glu, which allows the 1H resonances bound to C6 of NAA and C4 of Gln to be revealed. The measured time course of the resolved labeling into NAA C6 with the new scheme was consistent with the slow turnover of NAA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alterations to brain homeostasis during development are reflected in the neurochemical profile determined noninvasively by (1)H magnetic resonance spectroscopy. We determined longitudinal biochemical modifications in the cortex, hippocampus, and striatum of C57BL/6 mice aged between 3 and 24 months . The regional neurochemical profile evolution indicated that aging induces general modifications of neurotransmission processes (reduced GABA and glutamate), primary energy metabolism (altered glucose, alanine, and lactate) and turnover of lipid membranes (modification of choline-containing compounds and phosphorylethanolamine), which are all probably involved in the frequently observed age-related cognitive decline. Interestingly, the neurochemical profile was different in male and female mice, particularly in the levels of taurine that may be under the control of estrogen receptors. These neurochemical profiles constitute the basal concentrations in cortex, hippocampus, and striatum of healthy aging male and female mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photons participate in many atomic and molecular interactions and processes. Recent biophysical research has discovered an ultraweak radiation in biological tissues. It is now recognized that plants, animal and human cells emit this very weak biophotonic emission which can be readily measured with a sensitive photomultiplier system. UVA laser induced biophotonic emission of cultured cells was used in this report with the intention to detect biophysical changes between young and adult fibroblasts as well as between fibroblasts and keratinocytes. With suspension densities ranging from 1-8x106 cells/ml, it was evident that an increase of the UVA-laser-light induced photon emission intensity could be observed in young as well as adult fibroblastic cells. By the use of this method to determine ultraweak light emission, photons in cell suspensions in low volumes (100 mu l) could be detected, in contrast to previous procedures using quantities up to 10 ml. Moreover, the analysis has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 mu s instead of more than 100 milliseconds. These significant changes lead to an improvement factor up to 106 in comparison to classical detection procedures. In addition, different skin cells as fibroblasts and keratinocytes stemining from the same donor were measured using this new highly sensitive method in order to find new biophysical insight of light pathways. This is important in view to develop new strategies in biophotonics especially for use in alternative therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In (1) H magnetic resonance spectroscopy, macromolecule signals underlay metabolite signals, and knowing their contribution is necessary for reliable metabolite quantification. When macromolecule signals are measured using an inversion-recovery pulse sequence, special care needs to be taken to correctly remove residual metabolite signals to obtain a pure macromolecule spectrum. Furthermore, since a single spectrum is commonly used for quantification in multiple experiments, the impact of potential macromolecule signal variability, because of regional differences or pathologies, on metabolite quantification has to be assessed. In this study, we introduced a novel method to post-process measured macromolecule signals that offers a flexible and robust way of removing residual metabolite signals. This method was applied to investigate regional differences in the mouse brain macromolecule signals that may affect metabolite quantification when not taken into account. However, since no significant differences in metabolite quantification were detected, it was concluded that a single macromolecule spectrum can be generally used for the quantification of healthy mouse brain spectra. Alternatively, the study of a mouse model of human glioma showed several alterations of the macromolecule spectrum, including, but not limited to, increased mobile lipid signals, which had to be taken into account to avoid significant metabolite quantification errors.