974 resultados para Tuberculosis, cutaneous
Resumo:
Tuberculosis (TB) is a major infectious disease caused by Mycobacterium tuberculosis (Mtb). According to the World Health Organization (WHO), about 1.8 million people die from TB and 10 million new cases are recorded each year. Recently, a new series of naphthylchalcones has been identified as inhibitors of Mtb protein tyrosine phosphatases (PTPs). In this work, 100 chalcones were designed, synthesized, and investigated for their inhibitory properties against MtbPtps. Structure-activity relationships (SAR) were developed, leading to the discovery of new potent inhibitors with IC50 values in the low-micromolar range. Kinetic studies revealed competitive inhibition and high selectivity toward the Mtb enzymes. Molecular modeling investigations were carried out with the aim of revealing the most relevant structural requirements underlying the binding affinity and selectivity of this series of inhibitors as potential anti-TB drugs.
Resumo:
Leishmania (Viannia) shawi was characterized only recently, and few studies concerning the immunogenic and protective properties of its antigens have been performed. The present study aimed to evaluate the protective potential of the five antigenic fractions isolated from L. (V.) shawi promastigotes in experimental cutaneous leishmaniasis. Soluble antigen from L. (V.) shawi promastigotes was submitted to reverse phase HPLC to purify F1, F2, F3, F4 and F5 antigens. BALB/c mice were immunized once a week for two consecutive weeks by subcutaneous routes in the rump, using 25 mu g protein. After 1 week, groups were challenged in the footpad with L. (V.) shawi promastigotes. After 8 weeks, those same mice were sacrificed and parasite burden as well as the cellular and humoral immune responses were evaluated. F1 and F5-immunized mice restrained lesion progression and parasite load in the skin. However, only the F1 group was able to control the parasitism in lymph nodes, which was associated with low IL-4 and high IFN-gamma production; IgG2a isotype was increased in this group. Immunizations with F2, F3 and F4 antigens did not protect mice. The capability of antigens to restrain IL-4 levels and increase IFN-gamma was associated with protection, such as in immunization using F1 antigen.
Resumo:
Background Infliximab and etarnecept are now widely used for treating severe psoriasis. However, these drugs, especially infliximab, increased the risk of tuberculosis reactivation. Surprisingly, epidemiological data suggest that the tuberculosis rate in patients taking infliximab in Sao Paulo State, Brazil, is similar to that of some developed, non-endemic countries. Objective The aim of this study was to better understand the effect of infliximab on Mycobacterium tuberculosis (Mtb) immune responses of psoriasis patients in an endemic setting (Brazil). Methods We evaluated the tuberculosis-specific immune responses of severe psoriasis patients and healthy individuals, both tuberculin skin test (TST) positive, in the presence/absence of infliximab. Patients had untreated severe psoriasis, no co-morbidities affecting the immune responses and a TST >10 mm. Healthy TST+ (>10 mm) individuals were evaluated in parallel. PBMC cultures from both groups were stimulated with different Mycobacterium tuberculosis (Mtb) antigens (ESAT-6, 85B and Mtb lysate) and phytohemagglutinin, with or without infliximab (5 mu g/mL). Parameters evaluated were TNF-alpha, IFN-gamma and IL-10 secretion by ELISA, overnight IFN-gamma ELISpot and lymphocyte proliferative response (LPR). Results Infliximab almost abolished TNF-alpha detection in PBMC supernatants of both groups. It also significantly reduced the LPR to phytohemagglutinin and the Mtb antigens as well as the IFN-gamma levels secreted into day 5 supernatants in both groups. There was no concomitant exaggerated IL-10 secretion that could account for the decreases in these responses. ELISpot showed that, contrasting with the central-memory responses above, infliximab did not affect effector-memory INF-gamma-releasing T-cell numbers. Conclusions Infliximab affected some, but not all aspects of the in vitro antituberculosis immune responses tested. The preserved effector-memory responses, putatively related to exposure to environmental mycobacteria, may help to explain the lower than expected susceptibility to tuberculosis reactivation in our setting. Received: 29 December 2010; Accepted: 9 March 2011
Resumo:
Twenty-three naphthoimidazoles and six naphthoxazoles were synthesised and evaluated against susceptible and rifampicin- and isoniazid-resistant strains of Mycobacterium tuberculosis. Among all the compounds evaluated, fourteen presented MIC values in the range of 0.78 to 6.25 mu g/mL against susceptible and resistant strains of M. tuberculosis, Five structures were solved by X-ray crystallographic analysis. These substances are promising antimycobacterial prototypes. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this article, we propose a new Bayesian flexible cure rate survival model, which generalises the stochastic model of Klebanov et al. [Klebanov LB, Rachev ST and Yakovlev AY. A stochastic-model of radiation carcinogenesis - latent time distributions and their properties. Math Biosci 1993; 113: 51-75], and has much in common with the destructive model formulated by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de Sao Carlos, Sao Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)]. In our approach, the accumulated number of lesions or altered cells follows a compound weighted Poisson distribution. This model is more flexible than the promotion time cure model in terms of dispersion. Moreover, it possesses an interesting and realistic interpretation of the biological mechanism of the occurrence of the event of interest as it includes a destructive process of tumour cells after an initial treatment or the capacity of an individual exposed to irradiation to repair altered cells that results in cancer induction. In other words, what is recorded is only the damaged portion of the original number of altered cells not eliminated by the treatment or repaired by the repair system of an individual. Markov Chain Monte Carlo (MCMC) methods are then used to develop Bayesian inference for the proposed model. Also, some discussions on the model selection and an illustration with a cutaneous melanoma data set analysed by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de Sao Carlos, Sao Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)] are presented.
Resumo:
Abstract Background Smear negative pulmonary tuberculosis (SNPT) accounts for 30% of pulmonary tuberculosis cases reported yearly in Brazil. This study aimed to develop a prediction model for SNPT for outpatients in areas with scarce resources. Methods The study enrolled 551 patients with clinical-radiological suspicion of SNPT, in Rio de Janeiro, Brazil. The original data was divided into two equivalent samples for generation and validation of the prediction models. Symptoms, physical signs and chest X-rays were used for constructing logistic regression and classification and regression tree models. From the logistic regression, we generated a clinical and radiological prediction score. The area under the receiver operator characteristic curve, sensitivity, and specificity were used to evaluate the model's performance in both generation and validation samples. Results It was possible to generate predictive models for SNPT with sensitivity ranging from 64% to 71% and specificity ranging from 58% to 76%. Conclusion The results suggest that those models might be useful as screening tools for estimating the risk of SNPT, optimizing the utilization of more expensive tests, and avoiding costs of unnecessary anti-tuberculosis treatment. Those models might be cost-effective tools in a health care network with hierarchical distribution of scarce resources.
Resumo:
Abstract Background Smear-negative pulmonary tuberculosis (SNPTB) accounts for 30% of Pulmonary Tuberculosis (PTB) cases reported annually in developing nations. Polymerase chain reaction (PCR) may provide an alternative for the rapid detection of Mycobacterium tuberculosis (MTB); however little data are available regarding the clinical utility of PCR in SNPTB, in a setting with a high burden of TB/HIV co-infection. Methods To evaluate the performance of the PCR dot-blot in parallel with pretest probability (Clinical Suspicion) in patients suspected of having SNPTB, a prospective study of 213 individuals with clinical and radiological suspicion of SNPTB was carried out from May 2003 to May 2004, in a TB/HIV reference hospital. Respiratory specialists estimated the pretest probability of active disease into high, intermediate, low categories. Expectorated sputum was examined by direct microscopy (Ziehl-Neelsen staining), culture (Lowenstein Jensen) and PCR dot-blot. Gold standard was based on culture positivity combined with the clinical definition of PTB. Results In smear-negative and HIV subjects, active PTB was diagnosed in 28.4% (43/151) and 42.2% (19/45), respectively. In the high, intermediate and low pretest probability categories active PTB was diagnosed in 67.4% (31/46), 24% (6/25), 7.5% (6/80), respectively. PCR had sensitivity of 65% (CI 95%: 50%–78%) and specificity of 83% (CI 95%: 75%–89%). There was no difference in the sensitivity of PCR in relation to HIV status. PCR sensitivity and specificity among non-previously TB treated and those treated in the past were, respectively: 69%, 43%, 85% and 80%. The high pretest probability, when used as a diagnostic test, had sensitivity of 72% (CI 95%:57%–84%) and specificity of 86% (CI 95%:78%–92%). Using the PCR dot-blot in parallel with high pretest probability as a diagnostic test, sensitivity, specificity, positive and negative predictive values were: 90%, 71%, 75%, and 88%, respectively. Among non-previously TB treated and HIV subjects, this approach had sensitivity, specificity, positive and negative predictive values of 91%, 79%, 81%, 90%, and 90%, 65%, 72%, 88%, respectively. Conclusion PCR dot-blot associated with a high clinical suspicion may provide an important contribution to the diagnosis of SNPTB mainly in patients that have not been previously treated attended at a TB/HIV reference hospital.
Resumo:
Abstract Background Assuming a higher risk of latent tuberculosis (TB) infection in the population of Rio de Janeiro, Brazil, in October of 1998 the TB Control Program of Clementino Fraga Filho Hospital (CFFH) routinely started to recommend a two-step tuberculin skin test (TST) in contacts of pulmonary TB cases in order to distinguish a boosting reaction due to a recall of delayed hypersensitivity previously established by infection with Mycobacterium tuberculosis (M.tb) or BCG vaccination from a tuberculin conversion. The aim of this study was to assess the prevalence of boosted tuberculin skin tests among contacts of individuals with active pulmonary tuberculosis (TB). Methods Retrospective cohort of TB contacts ≥ 12 years old who were evaluated between October 1st, 1998 and October 31st 2001. Contacts with an initial TST ≤ 4 mm were considered negative and had a second TST applied after 7–14 days. Boosting reaction was defined as a second TST ≥ 10 mm with an increase in induration ≥ 6 mm related to the first TST. All contacts with either a positive initial or repeat TST had a chest x-ray to rule out active TB disease, and initially positive contacts were offered isoniazid preventive therapy. Contacts that boosted did not receive treatment for latent TB infection and were followed for 24 months to monitor the development of TB. Statistical analysis of dichotomous variables was performed using Chi-square test. Differences were considered significant at a p < 0.05. Results Fifty four percent (572/1060) of contacts had an initial negative TST and 79% of them (455/572) had a second TST. Boosting was identified in 6% (28/455). The mean age of contacts with a boosting reaction was 42.3 ± 21.1 and with no boosting was 28.7 ± 21.7 (p = 0.01). Fifty percent (14/28) of individuals whose test boosted met criteria for TST conversion on the second TST (increase in induration ≥ 10 mm). None of the 28 contacts whose reaction boosted developed TB disease within two years following the TST. Conclusion The low number of contacts with boosting and the difficulty in distinguishing boosting from TST conversion in the second TST suggests that the strategy of two-step TST testing among contacts of active TB cases may not be useful. However, this conclusion must be taken with caution because of the small number of subjects followed.
Resumo:
Abstract Background Direct smear examination with Ziehl-Neelsen (ZN) staining for the diagnosis of pulmonary tuberculosis (PTB) is cheap and easy to use, but its low sensitivity is a major drawback, particularly in HIV seropositive patients. As such, new tools for laboratory diagnosis are urgently needed to improve the case detection rate, especially in regions with a high prevalence of TB and HIV. Objective To evaluate the performance of two in house PCR (Polymerase Chain Reaction): PCR dot-blot methodology (PCR dot-blot) and PCR agarose gel electrophoresis (PCR-AG) for the diagnosis of Pulmonary Tuberculosis (PTB) in HIV seropositive and HIV seronegative patients. Methods A prospective study was conducted (from May 2003 to May 2004) in a TB/HIV reference hospital. Sputum specimens from 277 PTB suspects were tested by Acid Fast Bacilli (AFB) smear, Culture and in house PCR assays (PCR dot-blot and PCR-AG) and their performances evaluated. Positive cultures combined with the definition of clinical pulmonary TB were employed as the gold standard. Results The overall prevalence of PTB was 46% (128/277); in HIV+, prevalence was 54.0% (40/74). The sensitivity and specificity of PCR dot-blot were 74% (CI 95%; 66.1%-81.2%) and 85% (CI 95%; 78.8%-90.3%); and of PCR-AG were 43% (CI 95%; 34.5%-51.6%) and 76% (CI 95%; 69.2%-82.8%), respectively. For HIV seropositive and HIV seronegative samples, sensitivities of PCR dot-blot (72% vs 75%; p = 0.46) and PCR-AG (42% vs 43%; p = 0.54) were similar. Among HIV seronegative patients and PTB suspects, ROC analysis presented the following values for the AFB smear (0.837), Culture (0.926), PCR dot-blot (0.801) and PCR-AG (0.599). In HIV seropositive patients, these area values were (0.713), (0.900), (0.789) and (0.595), respectively. Conclusion Results of this study demonstrate that the in house PCR dot blot may be an improvement for ruling out PTB diagnosis in PTB suspects assisted at hospitals with a high prevalence of TB/HIV.
Resumo:
Abstract Background Vaccination of neonates is generally difficult due to the immaturity of the immune system and consequent higher susceptibility to tolerance induction. Genetic immunization has been described as an alternative to trigger a stronger immune response in neonates, including significant Th1 polarization. In this investigation we analysed the potential use of a genetic vaccine containing the heat shock protein (hsp65) from Mycobacterium leprae (pVAXhsp65) against tuberculosis (TB) in neonate mice. Aspects as antigen production, genomic integration and immunogenicity were evaluated. Methods Hsp65 message and genomic integration were evaluated by RT-PCR and Southern blot, respectively. Immunogenicity of pVAXhsp65 alone or combined with BCG was analysed by specific induction of antibodies and cytokines, both quantified by ELISA. Results This DNA vaccine was transcribed by muscular cells of neonate mice without integration into the cellular genome. Even though this vaccine was not strongly immunogenic when entirely administered (three doses) during early animal's life, it was not tolerogenic. In addition, pVAXhsp65 and BCG were equally able to prime newborn mice for a strong and mixed immune response (Th1 + Th2) to pVAXhsp65 boosters administered later, at the adult life. Conclusion These results suggest that pVAXhsp65 can be safely used as a priming stimulus in neonate animals in prime-boost similar strategies to control TB. However, priming with BCG or pVAXhsp65, directed the ensuing immune response triggered by an heterologous or homologous booster, to a mixed Th1/Th2 pattern of response. Measures as introduction of IL-12 or GM-CSF genes in the vaccine construct or even IL-4 neutralization, are probably required to increase the priming towards Th1 polarization to ensure control of tuberculosis infection.
Resumo:
The great challenges for researchers working in the field of vaccinology are optimizing DNA vaccines for use in humans or large animals and creating effective single-dose vaccines using appropriated controlled delivery systems. Plasmid DNA encoding the heat-shock protein 65 (hsp65) (DNAhsp65) has been shown to induce protective and therapeutic immune responses in a murine model of tuberculosis (TB). Despite the success of naked DNAhsp65-based vaccine to protect mice against TB, it requires multiple doses of high amounts of DNA for effective immunization. In order to optimize this DNA vaccine and simplify the vaccination schedule, we coencapsulated DNAhsp65 and the adjuvant trehalose dimycolate (TDM) into biodegradable poly (DL-lactide-co-glycolide) (PLGA) microspheres for a single dose administration. Moreover, a single-shot prime-boost vaccine formulation based on a mixture of two different PLGA microspheres, presenting faster and slower release of, respectively, DNAhsp65 and the recombinant hsp65 protein was also developed. These formulations were tested in mice as well as in guinea pigs by comparison with the efficacy and toxicity induced by the naked DNA preparation or BCG. The single-shot prime-boost formulation clearly presented good efficacy and diminished lung pathology in both mice and guinea pigs.
Resumo:
Abstract Background A number of reports have demonstrated that rodents immunized with DNA vaccines can produce antibodies and cellular immune responses presenting a long-lasting protective immunity. These findings have attracted considerable interest in the field of DNA vaccination. We have previously described the prophylactic and therapeutic effects of a DNA vaccine encoding the Mycobacterium leprae 65 kDa heat shock protein (DNA-HSP65) in a murine model of tuberculosis. As DNA vaccines are often less effective in humans, we aimed to find out how the DNA-HSP65 stimulates human immune responses. Methods To address this question, we analysed the activation of both human macrophages and dendritic cells (DCs) cultured with DNA-HSP65. Then, these cells stimulated with the DNA vaccine were evaluated regarding the expression of surface markers, cytokine production and microbicidal activity. Results It was observed that DCs and macrophages presented different ability to uptake DNA vaccine. Under DNA stimulation, macrophages, characterized as CD11b+/CD86+/HLA-DR+, produced high levels of TNF-alpha, IL-6 (pro-inflammatory cytokines), and IL-10 (anti-inflammatory cytokine). Besides, they also presented a microbicidal activity higher than that observed in DCs after infection with M. tuberculosis. On the other hand, DCs, characterized as CD11c+/CD86+/CD123-/BDCA-4+/IFN-alpha-, produced high levels of IL-12 and low levels of TNF-alpha, IL-6 and IL-10. Finally, the DNA-HSP65 vaccine was able to induce proliferation of peripheral blood lymphocytes. Conclusion Our data suggest that the immune response is differently activated by the DNA-HSP65 vaccine in humans. These findings provide important clues to the design of new strategies for using DNA vaccines in human immunotherapy.
Resumo:
Abstract Background Although B cells are important as antigen presenting cells (APC) during the immune response, their role in DNA vaccination models is unknown. Methods In this study in vitro and in vivo experiments were performed to evaluate the ability of B cells to protect mice against Mycobacterium tuberculosis challenge. Results In vitro and in vivo studies showed that B cells efficiently present antigens after naked plasmid pcDNA3 encoding M. leprae 65-kDa heat shock protein (pcDNA3-Hsp65) internalization and protect B knock-out (BKO) mice against Mycobacterium tuberculosis infection. pcDNA3-Hsp65-transfected B cells adoptively transferred into BKO mice rescued the memory phenotypes and reduced the number of CFU compared to wild-type mice. Conclusions These data not only suggest that B cells play an important role in the induction of CD8 T cells but also that they improve bacterial clearance in DNA vaccine model.
Resumo:
In order to achieve a better understanding of multiple infections and long latency in the dynamics of Mycobacterium tuberculosis infection, we analyze a simple model. Since backward bifurcation is well documented in the literature with respect to the model we are considering, our aim is to illustrate this behavior in terms of the range of variations of the model's parameters. We show that backward bifurcation disappears (and forward bifurcation occurs) if: (a) the latent period is shortened below a critical value; and (b) the rates of super-infection and re-infection are decreased. This result shows that among immunosuppressed individuals, super-infection and/or changes in the latent period could act to facilitate the onset of tuberculosis. When we decrease the incubation period below the critical value, we obtain the curve of the incidence of tuberculosis following forward bifurcation; however, this curve envelops that obtained from the backward bifurcation diagram.
Resumo:
Abstract Background American cutaneous leishmaniasis (ACL) is a re-emerging disease in the state of São Paulo, Brazil. It is important to understand both the vector and disease distribution to help design control strategies. As an initial step in applying geographic information systems (GIS) and remote sensing (RS) tools to map disease-risk, the objectives of the present work were to: (i) produce a single database of species distributions of the sand fly vectors in the state of São Paulo, (ii) create combined distributional maps of both the incidence of ACL and its sand fly vectors, and (iii) thereby provide individual municipalities with a source of reference material for work carried out in their area. Results A database containing 910 individual records of sand fly occurrence in the state of São Paulo, from 37 different sources, was compiled. These records date from between 1943 to 2009, and describe the presence of at least one of the six incriminated or suspected sand fly vector species in 183/645 (28.4%) municipalities. For the remaining 462 (71.6%) municipalities, we were unable to locate records of any of the six incriminated or suspected sand fly vector species (Nyssomyia intermedia, N. neivai, N. whitmani, Pintomyia fischeri, P. pessoai and Migonemyia migonei). The distribution of each of the six incriminated or suspected vector species of ACL in the state of São Paulo were individually mapped and overlaid on the incidence of ACL for the period 1993 to 1995 and 1998 to 2007. Overall, the maps reveal that the six sand fly vector species analyzed have unique and heterogeneous, although often overlapping, distributions. Several sand fly species - Nyssomyia intermedia and N. neivai - are highly localized, while the other sand fly species - N. whitmani, M. migonei, P. fischeri and P. pessoai - are much more broadly distributed. ACL has been reported in 160/183 (87.4%) of the municipalities with records for at least one of the six incriminated or suspected sand fly vector species, while there are no records of any of these sand fly species in 318/478 (66.5%) municipalities with ACL. Conclusions The maps produced in this work provide basic data on the distribution of the six incriminated or suspected sand fly vectors of ACL in the state of São Paulo, and highlight the complex and geographically heterogeneous pattern of ACL transmission in the region. Further studies are required to clarify the role of each of the six suspected sand fly vector species in different regions of the state of São Paulo, especially in the majority of municipalities where ACL is present but sand fly vectors have not yet been identified.