914 resultados para Triangle Number
Resumo:
Magical ideation and belief in the paranormal is considered to represent a trait-like character; people either believe in it or not. Yet, anecdotes indicate that exposure to an anomalous event can turn skeptics into believers. This transformation is likely to be accompanied by altered cognitive functioning such as impaired judgments of event likelihood. Here, we investigated whether the exposure to an anomalous event changes individuals' explicit traditional (religious) and non-traditional (e.g., paranormal) beliefs as well as cognitive biases that have previously been associated with non-traditional beliefs, e.g., repetition avoidance when producing random numbers in a mental dice task. In a classroom, 91 students saw a magic demonstration after their psychology lecture. Before the demonstration, half of the students were told that the performance was done respectively by a conjuror (magician group) or a psychic (psychic group). The instruction influenced participants' explanations of the anomalous event. Participants in the magician, as compared to the psychic group, were more likely to explain the event through conjuring abilities while the reverse was true for psychic abilities. Moreover, these explanations correlated positively with their prior traditional and non-traditional beliefs. Finally, we observed that the psychic group showed more repetition avoidance than the magician group, and this effect remained the same regardless of whether assessed before or after the magic demonstration. We conclude that pre-existing beliefs and contextual suggestions both influence people's interpretations of anomalous events and associated cognitive biases. Beliefs and associated cognitive biases are likely flexible well into adulthood and change with actual life events.
Resumo:
Identification of larval simuliids has always been difficult due to the morphological similarity many species bear to one another. For this reason all characters available have been drawn upon to aid in species identification, including head fan ray number. Even in light of an increasing body of anecdotal reports that head fan ray number is not fixed, it has continued to be used to aid species identification. In the current experiment simuliid larvae were reared under controlled laboratory conditions to last instar in one of three feeding regimes. Out of nine trials, the results of six showed a significant inverse relationship between feeding regime and head fan ray number. In addition to the laboratory experiments, larvae were also collected from the field over the course of the spring and summer, 1994. From these samples significant interspecific and intraspecific variations in head fan ray number were found both spatially and temporally within Algonquin Park. From these data it is concluded that head fan ray number for the species analysed is a developmentally plastic character, which varies in response to food availability. Furthermore, given the extreme variations in head fan ray number found in some species, I recommend that head fan ray number not be used as an aid to identification unless it can be shown to be a fixed character for the species in question.
Resumo:
At head of title: [78].
Resumo:
Caption title.
Resumo:
Mathematical predictions of flow conditions along a steep gradient rock bedded stream are examined. Stream gage discharge data and Manning's Equation are used to calculate alternative velocities, and subsequently Froude Numbers, assuming varying values of velocity coefficient, full depth or depth adjusted for vertical flow separation. Comparison of the results with photos show that Froude Numbers calculated from velocities derived from Manning's Equation, assuming a velocity coefficient of 1.30 and full depth, most accurately predict flow conditions, when supercritical flow is defined as Froude Number values above 0.84. Calculated Froude Number values between 0.8 and 1.1 correlate well with observed transitional flow, defined as the first appearance of small diagonal waves. Transitions from subcritical through transitional to clearly supercritical flow are predictable. Froude Number contour maps reveal a sinuous rise and fall of values reminiscent of pool riffle energy distribution.
Resumo:
Full Title: Letters from the Secretary of War to the Committee of Ways and Means, in relation to the number of Militia called into the public service in 1813, to a provision for paying the bounties and premiums to soldiers lately authorized, and to the strength of the army March, 3, 1814. Read, and ordered to be printed. U.S. 13th Congress 2nd Session, 1813-1814. House.
Resumo:
List of the number of loads dredged by Smiley’s Dredge since the 1st of October along the Welland Railway. This is addressed to S.D. Woodruff and signed by James Woodall of Lock No. 1. There are holes and stains in the document. Text is not affected, Jan. 12, 1859.
Resumo:
Note regarding the number of days Fred Holmes was employed upon the Port Robinson and Thorold macadamized road during the months of July and August. This is signed by S.D. Woodruff and Fred Holmes, November, 1857.
Resumo:
Travail d'intégration réalisé dans le cadre du cours PHT-6113.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Gowers, dans son article sur les matrices quasi-aléatoires, étudie la question, posée par Babai et Sos, de l'existence d'une constante $c>0$ telle que tout groupe fini possède un sous-ensemble sans produit de taille supérieure ou égale a $c|G|$. En prouvant que, pour tout nombre premier $p$ assez grand, le groupe $PSL_2(\mathbb{F}_p)$ (d'ordre noté $n$) ne posséde aucun sous-ensemble sans produit de taille $c n^{8/9}$, il y répond par la négative. Nous allons considérer le probléme dans le cas des groupes compacts finis, et plus particuliérement des groupes profinis $SL_k(\mathbb{Z}_p)$ et $Sp_{2k}(\mathbb{Z}_p)$. La premiére partie de cette thése est dédiée à l'obtention de bornes inférieures et supérieures exponentielles pour la mesure suprémale des ensembles sans produit. La preuve nécessite d'établir préalablement une borne inférieure sur la dimension des représentations non-triviales des groupes finis $SL_k(\mathbb{Z}/(p^n\mathbb{Z}))$ et $Sp_{2k}(\mathbb{Z}/(p^n\mathbb{Z}))$. Notre théoréme prolonge le travail de Landazuri et Seitz, qui considérent le degré minimal des représentations pour les groupes de Chevalley sur les corps finis, tout en offrant une preuve plus simple que la leur. La seconde partie de la thése à trait à la théorie algébrique des nombres. Un polynome monogéne $f$ est un polynome unitaire irréductible à coefficients entiers qui endengre un corps de nombres monogéne. Pour un nombre premier $q$ donné, nous allons montrer, en utilisant le théoréme de densité de Tchebotariov, que la densité des nombres premiers $p$ tels que $t^q -p$ soit monogéne est supérieure ou égale à $(q-1)/q$. Nous allons également démontrer que, quand $q=3$, la densité des nombres premiers $p$ tels que $\mathbb{Q}(\sqrt[3]{p})$ soit non monogéne est supérieure ou égale à $1/9$.
Resumo:
Latex a été utilisé pour la redaction de cette thèse.