973 resultados para Tabu search algorithms
Resumo:
The research reported in this series of article aimed at (1) automating the search of questioned ink specimens in ink reference collections and (2) at evaluating the strength of ink evidence in a transparent and balanced manner. These aims require that ink samples are analysed in an accurate and reproducible way and that they are compared in an objective and automated way. This latter requirement is due to the large number of comparisons that are necessary in both scenarios. A research programme was designed to (a) develop a standard methodology for analysing ink samples in a reproducible way, (b) comparing automatically and objectively ink samples and (c) evaluate the proposed methodology in forensic contexts. This report focuses on the last of the three stages of the research programme. The calibration and acquisition process and the mathematical comparison algorithms were described in previous papers [C. Neumann, P. Margot, New perspectives in the use of ink evidence in forensic science-Part I: Development of a quality assurance process for forensic ink analysis by HPTLC, Forensic Sci. Int. 185 (2009) 29-37; C. Neumann, P. Margot, New perspectives in the use of ink evidence in forensic science-Part II: Development and testing of mathematical algorithms for the automatic comparison of ink samples analysed by HPTLC, Forensic Sci. Int. 185 (2009) 38-50]. In this paper, the benefits and challenges of the proposed concepts are tested in two forensic contexts: (1) ink identification and (2) ink evidential value assessment. The results show that different algorithms are better suited for different tasks. This research shows that it is possible to build digital ink libraries using the most commonly used ink analytical technique, i.e. high-performance thin layer chromatography, despite its reputation of lacking reproducibility. More importantly, it is possible to assign evidential value to ink evidence in a transparent way using a probabilistic model. It is therefore possible to move away from the traditional subjective approach, which is entirely based on experts' opinion, and which is usually not very informative. While there is room for the improvement, this report demonstrates the significant gains obtained over the traditional subjective approach for the search of ink specimens in ink databases, and the interpretation of their evidential value.
Resumo:
In recent years, protein-ligand docking has become a powerful tool for drug development. Although several approaches suitable for high throughput screening are available, there is a need for methods able to identify binding modes with high accuracy. This accuracy is essential to reliably compute the binding free energy of the ligand. Such methods are needed when the binding mode of lead compounds is not determined experimentally but is needed for structure-based lead optimization. We present here a new docking software, called EADock, that aims at this goal. It uses an hybrid evolutionary algorithm with two fitness functions, in combination with a sophisticated management of the diversity. EADock is interfaced with the CHARMM package for energy calculations and coordinate handling. A validation was carried out on 37 crystallized protein-ligand complexes featuring 11 different proteins. The search space was defined as a sphere of 15 A around the center of mass of the ligand position in the crystal structure, and on the contrary to other benchmarks, our algorithm was fed with optimized ligand positions up to 10 A root mean square deviation (RMSD) from the crystal structure, excluding the latter. This validation illustrates the efficiency of our sampling strategy, as correct binding modes, defined by a RMSD to the crystal structure lower than 2 A, were identified and ranked first for 68% of the complexes. The success rate increases to 78% when considering the five best ranked clusters, and 92% when all clusters present in the last generation are taken into account. Most failures could be explained by the presence of crystal contacts in the experimental structure. Finally, the ability of EADock to accurately predict binding modes on a real application was illustrated by the successful docking of the RGD cyclic pentapeptide on the alphaVbeta3 integrin, starting far away from the binding pocket.
Resumo:
Anotamos, neste trabalho, reflexões sobre as conseqüências das Tecnologias da Informação e da Comunicação (TICs) para o direito autoral e sobre os atores do processo informativo. Partimos da lei do direito autoral vigente no Brasil, perguntando-nos como tais normas protegem as obras intelectuais no contexto digital e até que ponto há legalidade e legitimidade na digitalização de livros protegidos, disponibilizados on-line, tomando como exemplo o caso "Google Book Search". Constatamos que a lei atual pouco defende os direitos dos autores e dos leitores, pois se volta para a proteção dos interesses privados comerciais, e que a sociedade civil encontra formas de ampliar o fluxo comunicativo em decorrência da facilidade de reprodução e distribuição de cópias de obras intelectuais proporcionada pelas TICs.
Resumo:
Regulatory gene networks contain generic modules, like those involving feedback loops, which are essential for the regulation of many biological functions (Guido et al. in Nature 439:856-860, 2006). We consider a class of self-regulated genes which are the building blocks of many regulatory gene networks, and study the steady-state distribution of the associated Gillespie algorithm by providing efficient numerical algorithms. We also study a regulatory gene network of interest in gene therapy, using mean-field models with time delays. Convergence of the related time-nonhomogeneous Markov chain is established for a class of linear catalytic networks with feedback loops.
Resumo:
This paper proposes a very fast method for blindly approximating a nonlinear mapping which transforms a sum of random variables. The estimation is surprisingly good even when the basic assumption is not satisfied.We use the method for providing a good initialization for inverting post-nonlinear mixtures and Wiener systems. Experiments show that the algorithm speed is strongly improved and the asymptotic performance is preserved with a very low extra computational cost.
Resumo:
In this paper, we present a comprehensive study of different Independent Component Analysis (ICA) algorithms for the calculation of coherency and sharpness of electroencephalogram (EEG) signals, in order to investigate the possibility of early detection of Alzheimer’s disease (AD). We found that ICA algorithms can help in the artifact rejection and noise reduction, improving the discriminative property of features in high frequency bands (specially in high alpha and beta ranges). In addition to different ICA algorithms, the optimum number of selected components is investigated, in order to help decision processes for future works.
Resumo:
In this paper we present a quantitative comparisons of different independent component analysis (ICA) algorithms in order to investigate their potential use in preprocessing (such as noise reduction and feature extraction) the electroencephalogram (EEG) data for early detection of Alzhemier disease (AD) or discrimination between AD (or mild cognitive impairment, MCI) and age-match control subjects.
Resumo:
BACKGROUND: Active screening by mobile teams is considered the best method for detecting human African trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense but the current funding context in many post-conflict countries limits this approach. As an alternative, non-specialist health care workers (HCWs) in peripheral health facilities could be trained to identify potential cases who need testing based on their symptoms. We explored the predictive value of syndromic referral algorithms to identify symptomatic cases of HAT among a treatment-seeking population in Nimule, South Sudan. METHODOLOGY/PRINCIPAL FINDINGS: Symptom data from 462 patients (27 cases) presenting for a HAT test via passive screening over a 7 month period were collected to construct and evaluate over 14,000 four item syndromic algorithms considered simple enough to be used by peripheral HCWs. For comparison, algorithms developed in other settings were also tested on our data, and a panel of expert HAT clinicians were asked to make referral decisions based on the symptom dataset. The best performing algorithms consisted of three core symptoms (sleep problems, neurological problems and weight loss), with or without a history of oedema, cervical adenopathy or proximity to livestock. They had a sensitivity of 88.9-92.6%, a negative predictive value of up to 98.8% and a positive predictive value in this context of 8.4-8.7%. In terms of sensitivity, these out-performed more complex algorithms identified in other studies, as well as the expert panel. The best-performing algorithm is predicted to identify about 9/10 treatment-seeking HAT cases, though only 1/10 patients referred would test positive. CONCLUSIONS/SIGNIFICANCE: In the absence of regular active screening, improving referrals of HAT patients through other means is essential. Systematic use of syndromic algorithms by peripheral HCWs has the potential to increase case detection and would increase their participation in HAT programmes. The algorithms proposed here, though promising, should be validated elsewhere.