833 resultados para TO-NOISE RATIO


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Gaia-ESO Survey is a large public spectroscopic survey that aims to derive radial velocities and fundamental parameters of about 105 Milky Way stars in the field and in clusters. Observations are carried out with the multi-object optical spectrograph FLAMES, using simultaneously the medium-resolution (R ~ 20 000) GIRAFFE spectrograph and the high-resolution (R ~ 47 000) UVES spectrograph. In this paper we describe the methods and the software used for the data reduction, the derivation of the radial velocities, and the quality control of the FLAMES-UVES spectra. Data reduction has been performed using a workflow specifically developed for this project. This workflow runs the ESO public pipeline optimizing the data reduction for the Gaia-ESO Survey, automatically performs sky subtraction, barycentric correction and normalisation, and calculates radial velocities and a first guess of the rotational velocities. The quality control is performed using the output parameters from the ESO pipeline, by a visual inspection of the spectra and by the analysis of the signal-to-noise ratio of the spectra. Using the observations of the first 18 months, specifically targets observed multiple times at different epochs, stars observed with both GIRAFFE and UVES, and observations of radial velocity standards, we estimated the precision and the accuracy of the radial velocities. The statistical error on the radial velocities is σ ~ 0.4 km s-1 and is mainly due to uncertainties in the zero point of the wavelength calibration. However, we found a systematic bias with respect to the GIRAFFE spectra (~0.9 km s-1) and to the radial velocities of the standard stars (~0.5 km s-1) retrieved from the literature. This bias will be corrected in the future data releases, when a common zero point for all the set-ups and instruments used for the survey is be established.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power line interference is one of the main problems in surface electromyogram signals (EMG) analysis. In this work, a new method based on the stationary wavelet packet transform is proposed to estimate and remove this kind of noise from EMG data records. The performance has been quantitatively evaluated with synthetic noisy signals, obtaining good results independently from the signal to noise ratio (SNR). For the analyzed cases, the obtained results show that the correlation coefficient is around 0.99, the energy respecting to the pure EMG signal is 98–104%, the SNR is between 16.64 and 20.40 dB and the mean absolute error (MAE) is in the range of −69.02 and −65.31 dB. It has been also applied on 18 real EMG signals, evaluating the percentage of energy respecting to the noisy signals. The proposed method adjusts the reduction level to the amplitude of each harmonic present in the analyzed noisy signals (synthetic and real), reducing the harmonics with no alteration of the desired signal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. The Gaia-ESO Survey (GES) is a large public spectroscopic survey at the European Southern Observatory Very Large Telescope. Aims. A key aim is to provide precise radial velocities (RVs) and projected equatorial velocities (vsini) for representative samples of Galactic stars, which will complement information obtained by the Gaia astrometry satellite. Methods. We present an analysis to empirically quantify the size and distribution of uncertainties in RV and vsini using spectra from repeated exposures of the same stars. Results. We show that the uncertainties vary as simple scaling functions of signal-to-noise ratio (S/N) and vsini, that the uncertainties become larger with increasing photospheric temperature, but that the dependence on stellar gravity, metallicity and age is weak. The underlying uncertainty distributions have extended tails that are better represented by Student’s t-distributions than by normal distributions. Conclusions. Parametrised results are provided, which enable estimates of the RV precision for almost all GES measurements, and estimates of the vsini precision for stars in young clusters, as a function of S/N, vsini and stellar temperature. The precision of individual high S/N GES RV measurements is 0.22–0.26 km s-1, dependent on instrumental configuration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many applications including object reconstruction, robot guidance, and. scene mapping require the registration of multiple views from a scene to generate a complete geometric and appearance model of it. In real situations, transformations between views are unknown and it is necessary to apply expert inference to estimate them. In the last few years, the emergence of low-cost depth-sensing cameras has strengthened the research on this topic, motivating a plethora of new applications. Although they have enough resolution and accuracy for many applications, some situations may not be solved with general state-of-the-art registration methods due to the signal-to-noise ratio (SNR) and the resolution of the data provided. The problem of working with low SNR data, in general terms, may appear in any 3D system, then it is necessary to propose novel solutions in this aspect. In this paper, we propose a method, μ-MAR, able to both coarse and fine register sets of 3D points provided by low-cost depth-sensing cameras, despite it is not restricted to these sensors, into a common coordinate system. The method is able to overcome the noisy data problem by means of using a model-based solution of multiplane registration. Specifically, it iteratively registers 3D markers composed by multiple planes extracted from points of multiple views of the scene. As the markers and the object of interest are static in the scenario, the transformations obtained for the markers are applied to the object in order to reconstruct it. Experiments have been performed using synthetic and real data. The synthetic data allows a qualitative and quantitative evaluation by means of visual inspection and Hausdorff distance respectively. The real data experiments show the performance of the proposal using data acquired by a Primesense Carmine RGB-D sensor. The method has been compared to several state-of-the-art methods. The results show the good performance of the μ-MAR to register objects with high accuracy in presence of noisy data outperforming the existing methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-05

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the effects of dopamine on the dynamics of semantic activation, 39 healthy volunteers were randomly assigned to ingest either a placebo (n = 24) or a levodopa (it = 16) capsule. Participants then performed a lexical decision task that implemented a masked priming paradigm. Direct and indirect semantic priming was measured across stimulus onset asynchronies (SOAs) of 250, 500 and 1200 ms. The results revealed significant direct and indirect semantic priming effects for the placebo group at SOAs of 250 ms and 500 ms, but no significant direct or indirect priming effects at the 1200 ms SOA. In contrast, the levodopa group showed significant direct and indirect semantic priming effects at the 250 ms SOA, while no significant direct or indirect priming effects were evident at the SOAs of 500 ins or 1200 ms. These results suggest that dopamine has a role in modulating both automatic and attentional aspects of semantic activation according to a specific time course. The implications of these results for current theories of dopaminergic modulation of semantic activation are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Otoacoustic emissions are frequently acquired from patients in a variety of body positions aside from the standard, seated orientation. Yet little knowledge is available regarding whether these deviations will produce nonpathological changes to the clinical results obtained. The present study aimed to describe the effects of body position on the distortion-product otoacoustic emissions of 60 normal-hearing adults. With particular attention given to common clinical practice, the Otodynamics ILO292, and the measurement parameters of amplitude, signal-to-noise ratio, and noise were utilized. Significant position-related effects and interactions were revealed for all parameters. Specifically, stronger emissions in the mid frequencies and higher noise levels at the extreme low and high frequencies were produced by testing subjects while lying on their side compared with the seated position. Further analysis of body position effects on emissions is warranted, in order to determine the need for clinical application of position-dependent normative data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fluorescence of single molecules coupled to a thermal bath is studied both experimentally and theoretically. The effect of different fluctuations on the coherence properties of resonance fluorescence is considered first. Coherence is measured in an interference experiment where a single molecule is used as a light source. A standard approach based on the optical Bloch equations apparently provides quite an accurate description of the interference experiment. Systems with long correlation times (where spectra are time dependent on any timescale) are considered next. It is shown that intensity-time-frequency correlation spectroscopy, which provides both high signal-to-noise ratio and high time resolution, is very suitable for such a case. The Bloch equations are further tested in an experiment where the shape of an excitation spectral line of a single molecule is accurately measured over six orders of magnitude of the exciting laser power. Significant deviations from the predictions of the Bloch equations are found. The role of critical parameters-the correlation time of the bath, the Rabi oscillation period, and the coupling constant between the bath and the molecule-is discussed. The paper also includes a short general introduction to the methodology of single-molecule studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated body position effects on transient evoked otoacoustic emission (TEOAE) recordings of clinical significance. Sixty adults (30 males, 30 females) were assessed using the Otodynamics ILO88 Analyzer in three positions (sitting, supine, and side-lying). Results indicated significant positional effects on the TEOAE parameters of A-B difference, noise, whole wave reproducibility, and response levels. These differences included higher noise levels in supine and side-lying positions in comparison to the upright sitting position. Lower whole wave reproducibility measurements, and higher response amplitudes, in the side-lying position compared with supine and seated positions were also observed. No significant effects were evident for signal-to-noise ratio or band reproducibility. Given the lack of significant body position effects on these latter parameters and the infrequent clinical use of the other parameters in isolation, there was no evidence to suggest the future need for major review of current pass/fail criteria or of the standard test protocol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research has suggested that the integrity of semantic processing may be compromised in Parkinson's disease (PD), which may account for difficulties in complex sentence comprehension. In order to investigate the time course and integrity of semantic activation in PD, 20 patients with PD and 23 healthy controls performed a lexical decision task based on the multi-priming paradigm. Semantic priming effects were measured across stimulus onset asynchronies of 250 ms, 600 ms, and 1200 ms. Further, PD participants performed an auditory comprehension task. The results revealed significantly different patterns of semantic priming for the PD group at the 250-ms and 1200-ms SOAs. In addition, a delayed time course of semantic activation was evident for PD patients with poor comprehension of complex sentences. These results provide further support to suggest that both automatic and controlled aspects of semantic activation may be compromised in PD. Furthermore, the results also suggest that some sentence comprehension deficits in PD may be related to a reduction in information processing speed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a recent study, severe distortions in the proton images of an excised, fixed, human brain in an 11.1 Tesla/40 cm MR instrument have been observed, and the effect modeled on phantom images using a finite difference time domain (FDTD) model. in the present study, we extend these simulations to that of a complete human head, employing a hybrid FDTD and method of moments (MoM) approach, which provides a validated method for simulating biological samples in coil structures. The effect of fixative on the image distortions is explored. importantly, temperature distributions within the head are also simulated using a bioheat method based on parameters derived from the electromagnetic simulations. The MoM/FDTD simulations confirm that the transverse magnetic field (B,) from a ReCav resonator exhibits good homogeneity in air but strong inhomogeneity when loaded with the head with or without fixative. The fixative serves to increase the distortions, but they are still significant for the in vivo simulations. The simulated signal intensity (SI) distribution within the sample confirm the distortions in the experimental images are caused by the complex interactions of the incident electromagnetic fields with tissue, which is heterogeneous in terms of conductivity and permittivity. The temperature distribution is likewise heterogeneous, raising concerns regarding hot spot generation in the sample that may exceed acceptable levels in future in vivo studies. As human imaging at 11.1 T is some time away, simulations are important in terms of predicting potential safety issues as well as evaluating practical concerns about the quality of images. Simulation on a whole human head at 11.1 T implies the wave behavior presents significant engineering challenges for ultra-high-field (UHF) MRI. Novel strategies will have to be employed in imaging technique and resonator design for UHF MRI to achieve the theoretical signal-to-noise ratio (SNR) improvements it offers over lower field systems. (C) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertical-cavity surface-emitting lasers (VCSELs) and microlenses can be used to implement free space optical interconnects (FSOIs) which do not suffer from the bandwidth limitations inherent in metallic interconnects. A comprehensive link equation describing the effects of both optical and electrical noise is introduced. We have evaluated FSOI performance by examining the following metrics: the space-bandwidth product (SBP), describing the density of channels and aggregate bandwidth that can be achieved, and the carrier-to-noise ratio (CNR), which represents the relative strength of the carrier signal. The mode expansion method (MEM) was used to account for the primary cause of optical noise: laser beam diffraction. While the literature commonly assumes an ideal single-mode laser beam, we consider the experimentally determined multimodal structure of a VCSEL beam in our calculations. It was found that maximum achievable interconnect length and density for a given CNR was significantly reduced when the higher order transverse modes were present in Simulations. However, the Simulations demonstrate that free-space optical interconnects are still a suitable solution for the communications bottleneck, despite the adverse effects introduced by transverse modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Circuit QED is a promising solid-state quantum computing architecture. It also has excellent potential as a platform for quantum control-especially quantum feedback control-experiments. However, the current scheme for measurement in circuit QED is low efficiency and has low signal-to-noise ratio for single-shot measurements. The low quality of this measurement makes the implementation of feedback difficult, and here we propose two schemes for measurement in circuit QED architectures that can significantly improve signal-to-noise ratio and potentially achieve quantum-limited measurement. Such measurements would enable the implementation of quantum feedback protocols and we illustrate this with a simple entanglement-stabilization scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This correspondence considers block detection for blind wireless digital transmission. At high signal-to-noise ratio (SNR), block detection errors are primarily due to the received sequence having multiple possible decoded sequences with the same likelihood. We derive analytic expressions for the probability of detection ambiguity written in terms of a Dedekind zeta function, in the zero noise case with large constellations. Expressions are also provided for finite constellations, which can be evaluated efficiently, independent of the block length. Simulations demonstrate that the analytically derived error floors exist at high SNR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reasons for performing study: Obtaining magnetic resonance images of the inner hoof wall tissue at the microscopic level would enable early accurate diagnosis of laminitis and therefore more effective therapy. Objectives: To optimise magnetic resonance imaging (MRI) parameters in order to obtain the highest possible resolution of the structures beneath the equine hoof wall. Methods: Magnetic resonance microscopy (MRM) was performed in front feet from 6 cadaver horses using T-2-weighted fast spin echo (FSE-T-2), and T-1-weighted gradient echo (GRE-T-1) sequences. Results: In T-2 weighted FSE images most of the stratum medium showed no signal, however the coronary, terminal and sole papillae were visible. The stratum lamellatum was clearly visible and primary epidermal lamellae could be differentiated from dermal lamellae. Conclusion: Most structures beneath the hoof wall were differentiated. Conventional scanners for diagnostic MRI in horses are low or high field. However this study used ultra-high field scanners currently not available for clinical use. Signal-to-noise ratio (SIN) increases as a function of field strength. An increase of spatial resolution of the image results in a decreased SIN. SIN can also be improved with better coils and the resolution of high field MRI scanners will increase as technology develops and surface array coils become more readily available. Potential relevance: Although MR images with microscopic resolution were obtained ex vivo, this study demonstrates the potential for detection of lamellar pathology as it occurs. Early recognition of the development of laminitis to instigate effective therapy at an earlier stage and may improve the outcome for laminitic horses. Clinical MR is now readily available at 3 T, while 4 T, 7 T and 9 T systems are being used for human whole body applications.