918 resultados para TG-DTG


Relevância:

10.00% 10.00%

Publicador:

Resumo:

本工作采用熔融反应接枝的方法将(3-异氰酸酯基-4-甲基)苯氨基甲酸-2-丙烯酯(TAI)引入到聚苯乙烯-b-聚(乙烯-co-丁烯)-b-聚苯乙烯三嵌段共聚物(SEBS)上,以实现SEBS的功能化。红外光谱表明TAI已经成功接枝到SEBS上。GPC测试表明接枝后SEBS具有高的分子量与宽的分子量分布。DMA分析证明,接枝后聚(乙烯-co-丁烯) (PEB)段的玻璃化转变提高。对未参与接枝的单体的分析表明,单体TAI是个不容易自聚的单体,并对接枝过程的机理进行了研究。 为了提高TAI的存储稳定性和解决反应过程中的毒性大的问题,采用己内酰胺为封端剂对TAI中的异氰酸酯进行了封端。红外光谱和核磁共振结果表明,己内酰胺封端的TAI(BTAI)中含有双键和封闭型异氰酸酯结构,不存在着活泼的异氰酸酯。红外光谱结果表明,在高温下BTAI可以重新产生活泼的异氰酸酯基团。DSC与TG/DTA研究证明,BTAI的初始解离温度大约为135 C。采用熔融反应接枝的方法将BTAI接枝到SEBS和乙烯-辛烯共聚物(POE)分子上。研究表明,接枝率随着单体含量或引发剂含量的增加而增加。接枝以后的SEBS与POE的剪切变稀行为都比未接枝的SEBS与POE要明显。 利用BTAI功能化的SEBS和POE两种弹性体,通过熔融反应共混方法制备了PA6合金。两种弹性体与PA6共混物的红外光谱和流变行为的研究表明,在反应共混中形成了新的接枝共聚物。共混物的脆断面的场发射扫描电镜照片表明,共混物形成一种海-岛结构,而反应共混物的具有更均匀的粒子分散性,更小的粒子尺寸。PA6/SEBS-g-BTAI共混的透射电镜照片说明,共混物中形成了一种以PS为核-PEB为壳的核壳结构。与相应的物理共混物相比,通过反应共混制备的PA6合金(PA6/SEBS-g-BTAI合金和PA6/POE-g-BTAI合金)的拉伸强度、杨氏模量得到了提高。两种反应共混物的缺口冲击强度得到了非常明显的提高,合金材料的缺口冲击强度可以达到1000 J/m 以上。共混物中弹性体对PA6的结晶起到了成核的作用,结晶温度提高。形成的共聚物阻碍了PA6的分子链的运动,使得PA6的结晶温度下降。 本工作还利用上述制备的POE-g-BTAI和SEBS-g-BTAI两种功能化的弹性体与聚对苯二甲酸丁二醇酯(PBT)进行共混。研究表明,在反应共混过程中PBT中的反应基团与释放出的异氰酸酯发生反应,生成了新的共聚物。通过共混物的脆断面的FESEM图片可以看到,POE与PBT的共混物中,POE以球状粒子分散在PBT中,并且反应共混物的粒子分散均匀,粒子尺寸变小。与POE/PBT共混不同的是,在PBT与SEBS共混过程中,二者形成了交错结构,而反应共混在较低含量就形成了交错结构。POE与PBT反应共混物的缺口冲击强度得到了很大的提高,冲击强度可以达到1100 J/m以上,而PBT与SEBS的反应共混物的冲击强度改变不大。相对于物理共混物,两种弹性体与PBT的反应共混物的拉伸强度与拉伸模量都得到了提高。弹性体的加入提高了PBT的结晶温度,反应共混物的结晶温度低于物理共混物的结晶温度,说明弹性体的加入起到了PBT的成核剂的作用,生成的共聚物亦阻碍了PBT的分子链的移动。 关键词:聚苯乙烯-b-聚(乙烯-co-丁烯)-b-聚苯乙烯三嵌段共聚物;乙烯-辛烯共聚物;封闭型异氰酸酯;反应加工;聚酰胺6;聚对苯二甲酸丁二醇酯

Relevância:

10.00% 10.00%

Publicador:

Resumo:

超疏水性表面是指水在固体表面的接触角大于150°的表面。这种表面具有很多独特的性质,如防污、防水、自清洁,防腐等。具有良好透光性的超疏水玻璃在很多交通工具如飞机、汽车等挡风玻璃及日常的建筑幕墙玻璃等方面具有广阔的应用前景。制备超疏水表面一般采用两种方法:一种是先在固体表面构建微细结构,再进行低表面能物质修饰;另一种是直接在具有低表面能材料表面构建微细结构。其中构建表面微细结构这一过程使得超疏水材料的制备过程更加繁琐,同时后续步骤有的还需要采用较昂贵的低能表面进行修饰,因而这些方法在实际大规模应用中缺乏可操作性。因此采用简单、快捷的方法直接制备超疏水表面是非常具有研究有意义的。 本文以常见的普通玻璃为基底,通过气液固扩散法,探索了一种采用简单的一步合成法直接在其表面制备出了具有完全疏水性的表面涂层。这种表面由无序排列的甲基硅氧烷聚合物纳米纤维构成,测试的水滴不能在这样的表面进行粘附,具有非常好的疏水性。同时采用FE-SEM、TG-DTA、FT-IR、Contact angle(CA)等手段对制备的涂层表面进行表征并对纳米纤维可能的形成机理进行了探讨,同时对其耐酸碱性、透光性、耐磨性等也进行了初步的研究。采用冷却这种完全疏水的涂层基底从空气中收集水分,发现这种完全疏水的材料比普通的基底材料具有更好的水分收集效率,因而有望将这种材料在除湿机以及空调上得到应用。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

玻璃化转变与结构松驰是高聚物的两个非常重要的现象,对高聚物的许多物理性质、使用温度范围、以及长期使用性能等都起着至关重要的决定作用。影响高聚物的玻璃化转变温度的因素有高聚物结构单元的化学结构,分子量的大小以及分布,分子链间的交联以及结晶等,而高聚物的链缠结对其玻璃化转变湿度也有着重要的影响。高聚物的链缠结概念首先是由高聚物的分子量--粘度之间的关系得出的。1940 年 Flory 首先发现对于柔性链聚合物而言,其液态的零切粘度同其分子量成正比;此后,1948 年 Fox 和 Flory 发现当聚合物链的长度超过某一临界值时,粘度与分子量的 3.4 次方成正比,而在临界值之下时粘度与他子量的 1 次方成正比。Bueche 于 1952 年首次提出了高聚物链缠结的概念,并对粘度与分子量的关系进行了成功的解释。链缠结从此之后就成为线性高聚物的一个重要特征并成为控制熔(溶)体流变和固体形变机制的关键因素。关于链缠结的理论也有许多,其中应用最为广泛的有蛇链模型(Reptation Model)和管子模型(Tube Model)等。1969年 Flory 提出聚合物的性质同其均方无扰尺寸有关,此后Doi 和 Edwards 得出了高聚物的链缠结同其无扰尺寸的关系。在通常情况下高聚物在本体状态下是以无规线团的形式彼此相互缠绕在一起的,根本无法相互区分开。而通过特殊的方法可以将在极稀溶液中保持彼此孤立的聚合物分子从溶液中分离出来,并且保持在溶液中的相互孤立状态,从而得到单链高聚物。在单链状态下高聚物分子之间是相互分离的,不存在分子间的链缠结作用,因此通过测定单链高聚物的性质,并与本体状态进行比较,就可以得出分子间链缠结对高聚物性质的影响。我们在本工作中采用了一种新的方法--快速蒸发法来制备高聚物的单链状态样品。具体步骤就是将由沸点远低于 100 ℃ 的溶剂所制成的高分子溶液逐滴滴加到在恒温槽中保持沸腾的水中,溶剂就会在瞬间蒸发出去,而高聚物则基本上保持在溶液中的状态析出。对于几种链段僵硬性不同的高聚物在不同浓度下进行快速蒸发而得到的样品,在相同的升温速率下,用 DSC 方法测定其玻璃化转变温度,发现这些高聚物的玻璃化转变温度随制备溶液浓度的变化都有相同的变化趋势,即在其临界浓度之上时,制备样品的玻璃化转变温度基本上不随浓度的变化而改变,并且同本体状态下的样品的 Tg 温度相近。而在临界浓度以下时,样品的玻璃化温度则随制备溶液浓度的降低而明显下降,在些浓度范围内玻璃化温度与溶液浓度的对数大致成一线性关系。在我们所研究的三种高聚物中,样品的玻璃化温度受制备溶液浓度的影响程度是不一样的,对 PS 的玻璃化转变湿度的影响最大,而对于 PES-C 的影响最小。为了定量地描述制备溶液的浓度变化对样品玻璃化转变温度的影响,我们定义了一个参数 s , s 的值越大,则表明浓度的降低对玻璃化温度下降的影响越明显。对于我们所研究的三种聚合物,S_(PS)>S_(PC)>S_(PES-C)。我们在本工作中还对单链状态对高聚物的结构松弛行为的影响进行了初步的研究,发现同本体样品相比,单链样品的热焓松弛峰所处的温度也比较低,这同其玻璃化转变温度较低相对应。并且同本体样品的焓松弛峰相比,单链样品松弛峰的峰高较低,峰的面积(同松弛焓相对应)也比本体样品的要小,但松弛峰的峰宽却变宽。由 KWW 方程及 TNM 现象学模型通过曲线拟合得出了本体样品与单链样品的结构松弛参数,发现对于所研究的三种高聚物,单链样品的松弛焓相对本体而言都有显著的降低,而特征时间并没有明显的变化,这其中的原因可能是单链状态下的高聚物,发现单链状态对其松弛焓的降低的影响程度也有差异,对于 PS 的影响最为显著,而对 PES-C 的影响最小,这同单链状态对玻璃化转变温度的影响相一致。在研究 PES-C 的分子量的变化对其结构松弛行为的影响时,通过 DSC 方法测出了 PES-C 在不同升温速率下的玻璃化温度,得到了玻璃化转变温度对升温速率的变化曲线,由 1/Tg 对 logQ_h这一直线的斜率,得出了 PES-C 样品的结构松弛的活化能 Δh~*,并且发现对于不同分子量的 PES-C 样品,尽管 Δh~* 和 Tg 的值各不相同,但是 Δh~*/Tg~2 的值却近似为一常数。这样,我们只要知道 PES-C 在某一分子量下的 Tg 以及 Δh~* 值,就可以推算出其它分子量的 PES-C 样品的 Δh~* 值。对于 PES-C 在不同退火温度下的焓变 ΔH(t) 对松弛时间 ta 的曲线进行拟合,并用 KWW 方程(Kraulsch — Watts — Williams)以及结构松弛的 NM(Narayanaswamy — Moynihan)现象学模型进行解析,得出了 PES-C 的结构松弛参数,如极限焓松弛 ΔH_∞,非指数性参数 β,特征结构松弛时间 logτ_c,非线性参数 x 等。并且发现对于不同分子量的样品,其结构弛行为对分子量的大小有着很强的依赖性,在退火间隔温度(Tg — Ta)相同时,特征松弛时间 logτ_c 随着分子量的增加而增加,极限焓松弛 ΔH_∞ 则随着 PES-C 分子量的增加而降低。这些都同 PC 和 PS 有着明显的区别。我们用分子链的运动性随分子量的变化对此作了解释,同普通柔性链高聚物相比,PES-C 的分子链的中间部分所受的限制更为强烈,相对只有链端部分可以相对自由运动。链端的数目随着分子量的降低而增加,因此当分子量降低时,样品在松弛过程中更加容易重排,因此相应的极限焓松弛 ΔH_∞ 也更大。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pt-Sn/A1_2O_3负载型双金属催化剂由于其独特的催化性能而被广泛应地用于催化重整工业当中。尽管它对于长链烷烃的脱氢取得较为理想的效果,但用于异丁烷等小分子脱氢却不够理想。Pt-Sn/Al_2O_3负载型双金属催化剂用于异丁烷脱氢,其初活性较高,但对异丁烯的选择性较低,且稳定性较差,易失活。本研究工作就是以Pt-Sn/Al_2O_3负载型双金属催化剂为基础,通过添加碱金属、稀土元素来调变其脱氢性能,一方面提高催化剂的稳定性,另一方面提高对异丁烯的选择性。本文所需要的所有催化剂均是应用传统的共浸法制得。我们首先研究了经碱金属调变的催化剂的脱氢性能。我们发现加入碱金属,尽管催化剂的初活性略有降低,但催化剂对异丁烯的选择性却明显升高,其抗积炭性能也有显著提高。在这三种碱金属当中,K的调变效果最好。我们借助于现代化的测试手段(XRD、XPS、TPR、DTA-TG)对催化剂及其积炭样品进行了表征。结果表明,所有金属组分均以高分散状态存在于载体之上,碱金属钾的加入并没有将离子态的锡还原为金属态。由于K~+是很强的电子施主,它能够减缓活性中心铂的缺电子状态(由于载体效应的存在,铂受载体的拉动效应,它往往以不同程度缺电子状态存在),从而减缓了活性中心与烃类之间的相互作用,有利于抑制积炭的产生。我们应用DTA-TG研究催化剂的积炭样品发现,碱金属能够抑制了烃类的深度脱氢。碱金属还中和了载体表面的酸性中心,这既抑制了异构化等副反应的发生,提高了对异丁烯的选择性,又抑制了积炭反应的发生。稀土元素对Pt-Sn - K/Al_2O_3催化剂的影响比较复杂。在种稀土元素当中(La、Ce、Pr、Nd、Sm、Eu),Sm、Ce的调变效果较好,而Eu的调变效果最差。钐的载量不宜太多,以0.30%为宜,太多,一方面有可能将离子态的锡还原成金属态而使催化剂失活,另一方面可能会导致载体晶型有所改变而影响金属组分与载体间的相互作用。TPR结果表明,稀土元素对催化剂的强弱吸附中心的影响是不同的。弱中心上,它作为受电子体,使得铂的缺电子状态加剧,削弱了活性中心与载体之间的相互作用;在强吸附中心上,稀土元素是给电子体,减缓了活性中心铂的缺电子状态,增强了其与载体的相互作用,这两方面共同作用的结果,增强了催化剂的抗积炭能力,提高了催化剂的稳定性。由于铟与锡属于同一周期,且在周期表中处于相临的位置,因此我们考察了铟的不同载量对Pt-In/A1_2O_3催化剂脱氢性能的影响。铟载量跟锡载量相同的情况下,Pt-Sn/Al_2O_3催化剂的活性要比Pt-Sn/Al_2O_3催化剂的活性高,但其对异丁烯的选择性和抗积炭能力却要比Pt-Sn/Al_2O_3催化剂差。另外,随着铟载量的逐渐增加,催化剂的活性逐渐下降,对异丁烯的选择性逐渐升高,异构化逐渐降低。这说明铟在催化剂中起了两方面的作用。首先,它能中和载体表面的酸性中心,再者,对铂活性中心起着一种电子效应。另外我们还考察了碱金属钾对Pt-In/Al_2O_3催化剂的调变作用

Relevância:

10.00% 10.00%

Publicador:

Resumo:

氮的氧化物(NOx)是大气中的一种重要的污染物,是酸雨的主要来源,目前氮氧化物的无毒处理已经是国际环保研究中最关键的课题之一。本论文选择了两种复合氧化物:一种是钙钛石结构的含Cu的层状复合氧化物;另一种是以水滑石为前体经焙烧后得的复合氧化物为催化剂对它们的物化性质和对催化消除NOx的活性进行了系统的研究,得到了一些有意义的结果。第一部分:钙钛石型结构的含Cu层状复合氧化物钙钛石复合氧化物由于具有独特的物理化学性质,长期以来一直受到固态物理、固体化学和催化领域的科技工作者的重视。尤其近年来对它们在催化消除NOx反应中的活性的研究引起了催化工作者的极大兴趣,这是由于,一方面,钙钛石类复合氧化物对处理NOx的反应活性比较高,有希望取代贵金属催化剂;另一方面,探讨复合氧化物的固态物理、化学性质与处理NOx反应催化性能的关系,有利于揭示处理NOx反应的催化作用本质,为寻找高效实用的催化剂提供理论依据。本论文系统研究了三个系列含Cu钙钛石型复合氧化物的固态物理化学性质和对NO-CO反应的催化性能,并讨论了二者的关系。主要的工作和结论如下:1) 以La_2CuO_4为模型化合物研究了制备方法对它的性质的影响:用四种制备方法:柠檬酸络合爆炸法,聚乙二醇凝胶法,聚丙烯酰胺凝胶法,DTPA络合法合成了La_2CuO_4。比较了四种方法的特点,和制备方法对La_2Cu0_4的结构的影响,并对所得La_2CuO_4在NO-CO反应中的催化活性的影响进行了研究。结果发现聚乙二醇凝胶法和DTPA络合法有利于形成好的晶形,而聚乙二醇凝胶法和聚丙烯酰胺凝胶法对NO-CO反应有较好的活性,这是由于由不同制备方法得到的样品中的缺陷的种类和含量不I司所致。2) La_(1-x)Ba_xCuO_(3-λ)系列中Ba含量对它的性质的影响:用柠檬酸络合法合成了LaBa_2Cu_3O_(7-λ),LaBaCu_2O_(5-λ),La_2BaCu_3O_(7-λ) La_4BaCu_5O_(13-λ)及YBa_2Cu_3O_(7-λ)五种钙钛石结构的复合氧化物。XRD分析表明此系列样品均为层状ABO_3结构(分别为二,三,五层)。用XPS和O_2-TPD对样品中的氧种进行了研究,结果显示样品中存在着两种活性氧种:α氧种和β氧种。在O_2-TPD中低温脱附的是α氧种,它可归属于化学吸附氧与样品中的氧空位的浓度有关。β氧种的脱附温度较高,它归属于晶格氧。利用H_2-TPR和化学分析的手段对样品中的金属离子和活性氧的稳定性进行了表征。结果显示大量的氧空位和Cu~(3+)存在于样品中,并且它们的浓度受Ba离子浓度的影响。此系列样品对CO还原NO的活性研究表明:它们的活性远远高于结构类似的Ln_2CuO_4和Ln_2NiO_4等复合氧化物,在低于300 ℃时N0转化率已接近100%.分析结果表明Cu~(3+)和氧空位对活性起很重要的作用。Ba离子的作用是:一方面使含Cu的ABO_3结构稳定;另一方面使样品更容易吸附NO。3) La_4BaCu_5O_(13-λ)中Mn或C0逐步取代Cu对样品性质的影响合成了两系列分别由Mn或Co逐步取代Cu的样品,XRD分析表明它们仍旧是钙钛石结构。通过XPS,O_2-TPD和化学分析方法对样品中的活性氧种进行了表征,结果表明,当Mn逐步取代Cu离子时,晶格氧增加,而吸附氧开始变化较小,当Mn含量大于Cu含量时,吸附氧迅速减少。在Co取代样品的O_(1s)的XPS谱中,氧种变化较Mn取代的小,这表明Co离子对样品中的氧空位含量的影响较Mn离子的小。氧化还原性能的研究表明当Cu离子被Mn或Co离子部分取代后,Cu离子变得更容易被还原,这表明Cu-M(Mn或CO)之间发生了协同作用,使Cu离子更活泼。当Mn或Co部分取代Cu离子之后,样品对CO还原NO反应的催化活性明显提高,当取代含量达到一定程度时(即X ≥ 3),催化活性迅速降低,这表明Cu离子在反应中起着很重要的作用,经过分析我们认为反应机理如下:Cu~(3+)-O~=-Cu~(3+) + CO → Cu~(2+)-□-Cu~(2+)+CO_2 Cu~(2+)-□-Cu~(2+) → Cu~(3+)-□-Cu~(2+) Cu~(3+)-□-Cu~(2+) + NO~-Cu~(3+)-NO-Cu~(2+) 2Cu~(3+)-NO-Cu~(2+) → 2Cu~(3+)-O~=-Cu~(3+) + N_2 式中□是氧空位,Cu~(3+)-□ 是F心。掺杂部分Mn或Co后,催化活性的提高可以归属于Cu-M之间发生的协同作用使Cu离子更活泼,表征结果表明Cu-Co之间的协同作用较Cu-Mn之间的弱(这可能是由于Co,Cu之间化学性质相似),但掺杂Co的样品的活性较掺杂Mn的要高,同时我们在反应中发现,Co含量较高的样品中反应产物中N_2O比掺杂Mn的样品高出许多,因此我们认为Co离子对反应中反应中间产物N_2O的生成比Mn离子要活性。第二部分以水滑石化合物为前体的复合氧化物水滑石类化合物属于一种阴离子粘土,由带正电荷的金属氧化物/氢氧化物和层间阴离子及水分子组成。以水滑石为母体经焙烧制得的氧化物催化剂用于氧化反应的实例尚不多,且大多用于液相催化反应。最近有文献报道含Co,Cu,Ni水滑石经焙烧后对N_2O分解有很好的活性,但还没有关于此类化合物应用于NO还原和分解的文献报道。我们首次将以水滑石为母体经焙烧制得的尖晶石催化剂用于催化消除NO_x的反应中,考察和表征了变更过渡金属离子时Co-M-Al系列和Mg-M-Al系列催化剂在CO还原NO,NO吸附和NO分解反应中的活性。1) 以Mg-M-Al水滑石为前体的催化剂用共沉淀法合成了一系列Mg-M-Al水滑石(M = Cr,Fe,Mn,Co,Ni,Cu;Mg/M/A1 = 3/1/1)。XRD表征表明所有化合物均为典型的水滑石化合物。通过TG-DTA考察了焙烧对样品的结构和组成的影响。450 ℃焙烧后所有样品的XRD图中仅能发现MgO相,表明过渡金属氧化物均匀地分散在MgO-Al_2O_3中,换句话说,所得样品焙烧后是过渡金属氧化物负载在MgO-Al_2O_3载体上。H_2-TPR研究进一步证实过渡金属氧化物在载体上得到了稳定。此系列样品对C0还原N0反应活性的测定表明Mg-Al-Cu样品表现出远远高于其它样品的活性,而Mg-Al和Mg-Ni-Al在550 ℃以下对反应几乎没有活性,其它样品表现出一定的活性。2) 以Co-M-Al水滑石为前体的催化剂体系经共沉淀法合成了Co-M-Al水滑石(M = 过渡金属),经焙烧后发现样品中有尖晶石相出现。比表面研究表明,在500-700 ℃之间比表面变化较小大约在80m~2/g左右,在更高温度焙烧后比表面迅速下降。此系列样品对NO的吸附性能研究表明Co-Al,C0-Ni-Al,Co-Cr-Al,Co-Fe-Al表现出较高的吸附性能,尤其是Co-Ni-Al在100 ℃对NO表现出100%的吸附;其它样品对NO的吸附较低。用过渡金属离子中d轨道电子在吸附前后的晶体场稳定化能的变化可以很好地解释此系列样品对NO的吸附性能。对NO分解的活性测定表明Co-Ni-A1,Co-Cr-A1和Co-Al表现出了较好的活性,其中Co-Ni-Al的活性最高。其它样品在600 ℃以下几乎没有活性。分析结果表明样品对NO分解有活性的催化剂必须具备两个条件:1:对NO有较好的吸附性能;2: NO分解后产生的氧可以容易的脱附。除Co-Al外,所有样品对CO还原NO表现出很高的活性:在150 ℃即有较高的NO转化率,在180 ℃NO转化率即可达到100%。催化剂的氧化还原性能在反应中起着很重要的作用,H_2-TPR研究发现掺杂其它过渡金属后Co离子的还原温度明显降低,表明Co离子得到了活化。3) 以Co-Cu-Al水滑石为前体的样品用共沉淀法合成了一系列Co/Cu/Al含量不同的水滑石化合物,包括Co/Cu/Al分别为7/1/1,3/1/1及1/1/1和仅含Co或Cu的Co/Al = 3/1,Cu/Al = 3/1等一系列样品。XRD结果表明除Cu-Al外其它样品经焙烧后均出现了尖晶石相。Cu-Al样品经焙烧后出现了CuO相表明样品为CuO负载于Al_2O_3上。NO和CO的TPD研究表明三组份样品对NO和CO的吸附明显高于二组份样品,而且含CO量高的样品对NO和CO的吸附能力更好,表明Co起较强的作用。在三组份样品的NO-TPD脱出物中发现有N_2O和N_2,表明NO在样品表面的吸附为活化吸附。对CO还原NO反应活性的研究表明,三组份样品的活性远远高于二组份样品,且含Co量高的样品活性较高,表明在此系列样品中Co离子起决定性作用,而Cu离子起助催化作用。通过对反应中各组份含量的变化分析,我们认为反应机理如下:CO + O-Cat → CO_2 + □-Cat NO + □-Cat → NO-Cat 2(NO-Cat) → N_2O + O-Cat + □-Cat N_2O + □-Cat → N_2O-Cat N_2_O-Cat → N_2 + O-Cat 2(N_2O-Cat) → N_2 + 2(O-Cat) O-Cat是样品中的晶格氧,在Co-Al中加入其它过渡金属离子使样品中的晶格氧得到活化,因此,催化活性得到提高。用以水滑石为前体,共沉淀法和固相反应法等三种制备方法合成了一系列Co-Cu-Al催化剂,发现以水滑石为前体的样品不论是对NO,CO的吸附性能还是对NO-CO反应的催化活性都远远高于其它方法制备的样品,这可能是由于水滑石可以起到一个模版作用,使Cu, Co离子分散的更均匀,以及使催化剂表面的含氧基团丰富。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

合成出12种β-二酮化合物:1-(4-硝基苯基)-3-苯基-1,3-丙二酮(1)、1-(3-硝基苯基)-3-苯基-1,3-丙二酮(2)、1-(4-胺基苯基)-3-苯基-1,3-丙二酮(3)、1-(3-胺基苯基)-3-苯基-1,3-丙二酮(4)、1-(4-马来酰亚胺基苯基)-3-苯基-1,3-丙二酮(5)、1-(3-马来酰亚胺基苯基)-3-苯基-1,3-丙二酮(6)、1,3-双(3一硝基苯基)-1,3-丙二酮(7)、1-(3-硝基苯基)-3-(4-硝基苯基)-1,3-丙二酮(8)、1,3-双(4-硝基苯基)-1,3-丙二酮(9);1,3-双(3-氨基苯基)-1,3-丙二酮(10)、1-(3-氨基苯基)-3-(4-氨基苯基)-1,3-丙二酮(11)、1,3-双(4-氨基苯基)-1,3-丙二酮(12)。12种化合物的结构均经多种光谱表征方法得到证实。采用定量~1H和~(13)C-NMR方法测定了化合物5-12酮式、烯醇式异构体的含量;烯醇式-酮式互变异构平衡常数;以及化合物5、6、8、lO烯醇式异构体的相对百分比。应用荧光光谱法研究了化合物的荧光性能,比较了取代基位置对其荧光性能的影响。以化合物5和6为单体,成功地制备出侧链含有B-二酮结构的2种马来酰亚胺均聚物。聚合研究结果表明间位取代的单体聚合速率明显大于对位取代的单体。光谱表征结果表明均聚物侧链的B-二酮基团主要以其烯醇式的形式存在,但是由于琥珀酰亚胺的共轭效应小于马来酰亚胺的共轭效应,因此均聚物的酮式异构体含量较之单体相对增大。荧光光谱研究表明虽然均聚物酮式异构体含量较高,但受大分子结构的影响,其荧光强度较小分子类似物有所降低。均聚物性能测试结果表明间位取代的均聚物较之对位取代的均聚物表现出较高的热性能。以甲基丙烯酸甲酯(MMA)、苯乙烯(St)、乙烯基正丁醚(BVE)、甲基丙烯酸正丁酯(BMA)、4-乙烯基吡啶(VPy)、1-乙烯基咪唑(VI)为第二单体,分别同化合物5和6共聚合成功地制备出十一种马来酰亚胺共聚物。共聚合研究结果表明,依第二单体的不同,部分共聚物表现出典型的交替共聚物性质,如第二单体为St、PPy和VI。当第二单体含有强质子受体性能的基团,如吡啶基和咪唑基时,同β-二酮基团的烯醇式存在大分子链内的分子间氢键作用。这种分子内氢键的相互作用,直接导致共聚物荧光性能的增强。此外,所有共聚物在保持良好的热稳定性能基础上,平均分子量均有相当大的提高,共聚物数均分子量最高者可达十几万。与此同时,共聚物的溶解性能也得到了彻底的改善,所有共聚物均可溶于氯仿、丙酮、四氢呋喃等溶剂。根据共聚微分方程,采用斜率截距法分别测定了十一组共聚体系的竞聚率。进而应用Alfrey-Price方程,求得的单体5和6的Q值和e值。单体5的平均Q和e值分别为1.08和1.94;单体6的平均Q和e值分别为1.05和1.69。以二胺单体10、11和12同多种二酐经由聚酰胺酸热或化学环化首次成功地合成出二十几种主链含有β-二酮结构的聚酰亚胺。粘度实验表明,由3种二胺合成的聚酰胺酸分子量都不高在0.30-1.09dL/g之间变化。比较3种二胺单体与相同二酐制备的聚酰胺酸分子量,其的大小次序为:10 > 11 > 12。溶解性实验表明由含有柔性桥联基团,如O,C(CF_3)_2,SO_2和C(CH_3)_2基团的二酐制备的聚酰亚胺表现出良好的溶解性,其中,同一种二酐与3种二胺单体制备的聚酰亚胺的溶解性的大小次序为:10 > 11 > 12。所得聚酰亚胺均表现出较高的玻璃化转变温度,如200℃以上,和热分解温度,如10%热失重温度于氮气和空气氛下均在400℃以上。广角X射线衍射分析表明多数聚酰亚胺为非晶聚合物,但是依二胺和二酐结构的不同,部分聚酰亚胺形态结构呈现出一定的有序性。比较含3种二胺单体的聚酰亚胺膜性能,以含二胺单体10的聚酰亚胺膜性能最佳。拉伸实验结果给出其断裂伸长率在2-6%之间;抗张强度在29-72Mpa之间;杨氏模量在1414-2111Mpa之间。二胺的活性取决于氨基的电子给予性,而氨基的电子给予性与氨基质子和直接联于氨基的碳原子化学位移密切相关。因此,由其化学位移的大小可推断出二胺的活性。根据NMR测得的二胺的氨基质子或直接联于氨基的碳原子化学位移,二胺活性的大小次序为:10 > 11 > 12。二胺结构对聚酰亚胺性能的影响主要来自二胺分子的空间立体结构或分子结构的对称性。二胺的线性越差,聚酰亚胺的溶解性越好;而二胺分子的对称性越好、刚性越强,聚酰亚胺的Tg越高。因此,比较三种二胺的结构,不难得出含3种二胺单体的聚酰亚胺的溶解性大小次序为:10 > 11 > 12,而含3种二胺单体的聚酰亚胺的Tg大小次序为:12 > 11 > 10。以上推论与实验结果完全一致。在成功地合成出主、侧链含β-二酮结构高性能聚合物的基础上,我们对β-二酮聚合物的光化学和配位化学性质进行了初步探索性研究。β-二酮聚合物的光化学性质研究表明,由于大分子结构的影响聚合物光酮化过程的暗反应变得非常之缓慢,因此,光酮化过程很难趋于平衡。聚合物与二乙烯基苯的光加成交联反应研究结果表明,在紫外光照条件下,聚合物与二乙烯基苯发生了光加成交联反应。以β-二酮聚合物作为配体兼载体同四氯化钛配合反应,成功地制备出聚合物负载过渡金属钛配合物催化剂。配合物催化剂的结构分析表明钛与聚合物配体存在多种配位形式。所得催化剂同MAO组成的催化体系可有效催化乙烯的配位聚合反应,在铝钛比仅为200时,催化剂的聚合活性可达3.9 * 10~5g/molTi·h。由于多种配位形式导致的多催化活性中心,因此,所得聚乙烯具有较宽的结晶熔融温度范围。该催化体系同样可有效催化苯乙烯的间同聚合。本体聚合铝钛比为200时,其聚合活性为5.2 * 104g/molTi·h。所得聚苯乙烯熔点温度达263 ℃,为典型的间同聚苯乙烯。以化合物5或6为配体,合成出三种三元稀土离子铕配合物单体。以上述三种配合物单体同MMA或St共聚制备出三种稀土聚合物配合物。考察了聚合物配合物荧光强度与其结构和铕含量的关系。所得聚合物配合物均为白色粉末,易溶于常用有机溶剂如氯仿、丙酮和四氢呋喃等。采用溶液浇铸法或旋转涂膜法,可方便地制备成无色透明薄膜。在紫外光激发下,薄膜发出特征的红色稀土离子铕的荧光。遗憾的是,在我们试图将聚合物配合物用于电致发光研究中,没有获得成功。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(1) 设计了如下合成各种芳香性螺双内酯衍生物的路线:以甲苯的衍生物与甲醛进行二缩合反应,得到二芳基甲烷,二芳基甲烷经两步法氧化后再在酸性条件下脱水环化成螺双内酯;或者将二芳基甲烷氧化后,再将芳环上的取代基转化成目标基团,然后进行环化,从而得到螺双内酯;或者在得到螺双内酯以后,再将芳环上的取代基转化成目标基团,获得相应的螺双内酯衍生物。利用该方法合成芳香性螺双内酯,未见文献报道。其优点在于原料易得,产品收率高,操作非常简单:尤其是具有普适性,对合成芳环上具有不同位置、不同数目取代基的螺双内酯衍生物极其方便。本文利用此方法合成了一系列共12个化合物。其结构均通过IR、NMR、MS和元素分析等手段证实。(2) 研究了螺双内酯衍生物的内酰胺化反应,发现芳香性螺双内酯在200℃以下与胺反应时,只有一个内酯环能发生内酰胺化反应,胺和螺双内酯本身的反应活性对能否发生双内酰胺化反应没有明显的影响,即使当温度升高至280℃时,也仅有26%的螺双内酰胺生成。但脂肪性螺双内酯在180℃以下与胺反应,即可全部转化成螺双内酰胺。这一结果纠正了Shell公司的Wang关于芳香性螺双内酯也能顺利的与胺反应生成螺双内酰胺的结论。在上述实验基础上,研究了芳香性和脂肪性螺双内酯的内酰胺化反应机理。结果发现,它们经历了不同的反应过程,生成不同的中间物,但都生成螺环内酯内酰胺中间物。芳香性和脂肪性螺环内酯内酰胺的不同稳定性是两者的内酰胺化反应出现不同结果的主要原因。(3) 利用合成的螺双内酯二酐和二酰氯与各种二胺进行缩聚,合成了一系列含螺双内酯结构的聚酰亚胺和聚酰胺,首次将芳香性螺双内酯结构完整的引入聚合物链。分析结果表明,这类聚酰亚胺具有良好的热稳定性,在N_2和空气环境中的5%热失重温度>500℃,Tg接近400℃,而且所得的膜无色透明。选择不对称结构的二胺,得到的聚酰亚胺可溶于DMSO、DMF、DMAc等非质子极性溶剂,有的甚至可溶于THF和CHCl_3等溶剂。合成的含芳香性螺双内酯结构的聚酰胺也具有较好的热稳定性和机械性能,它们的10%热失重温度>390℃,Tg介于180℃和290℃之间;断裂强度为50~100MPa,断裂伸长率为7~23%,初始膜量为1.1~2.7 GPa。含这种结构的聚酰胺,它们都能溶解于DMSO、DMF、DMAc等非质子极性溶剂。实验还通过模型化反应研究了在聚合过程中螺双内酯的开环行为,表明当二胺的反应活性低于ODA时,聚合过程中螺双内酯单元不发生开环。(4) 通过聚合物链中螺双内酯单元的内酰胺化反应,研究了含这类结构聚酰亚胺的交联。首先利用模型化反应,对交联反应进行交联条件的探索和结构的表征。结果显示,在150℃以上,交联反应在10 h内可以进行完全。通过对聚合物在交联前后的性能比较,发现在交联前,聚合物可溶于DMSO等高沸点的非质子极性溶剂,而交联以后的聚合物不溶于任何溶剂。在热性能方面,在交联以后,聚合物的玻璃态转化温度升高,热失重的速度明显降低。和以往的通过在聚合物前体链的末端引入烯和炔等不饱和基团,这些不饱和基团通过Diels-Alder,Michael加成和-ene反应等合成交联型聚酰亚胺相比,这种聚合物的交联方法其交联程度的大小不受预聚物分子量的影响,螺双内酯单元可以均匀的分布在预聚物链的任何位置,不一定在末端;并且实现了全芳香交联型聚酰亚胺。(5) 对芳香性螺双内酯四酸的拆分进行了探索。考察了奎宁、辛可宁、辛可尼丁和辛可尼丁苄基氯盐等不同的拆分试剂对四酸的拆分能力,发现辛可宁和辛可尼丁的拆分效果均比较好。应用辛可尼丁和辛可宁,对外消旋四酸进行连续拆分,可分别获得[α]_D~(25) = +186.4°和-188.6°的四酸对映体。依据手性光学方法(Chiroptical Methods)判断,认为为旋光纯的对映体。考察了酸、碱和热对其旋光稳定性的影响,显示在以上各环境中,螺环结构可以发生消旋,这说明螺双内酯结构对酸碱和热都是不稳定的。(6) 将上述(+)、(-)-四酸热法所成的二酐与二胺聚合,得到含旋光性芳香螺双内酯结构的聚酰亚胺,这种由面不对称的旋光性单体合成的聚酰亚胺,尚未见文献报道。经对比,旋光性和外消旋的聚合物在热性能和溶解性方面基本相同,仅在结晶形态方面略有差异,其中外消旋聚合物为非晶态,而旋光性聚合物则有一定的结晶含量。含旋光性芳香螺双内酯结构的聚酰亚胺,其旋光稳定性在酸碱当中也不稳定,但对热是稳定的。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

为了研究旋光性聚喹啉与相应非旋光性聚喹啉之间的物性差异,进而寻找旋光性聚喹啉的独特性能,合成了含有联萘基团的旋光性聚喹啉。并对其性质进行了研究。主要内容如下:1. 用(-)-辛可尼丁作为拆分剂,将(±)-联萘酚拆分为手性的对映体,(R)-联萘酚和(S)-联萘酚。并从他们出发,合成了手性的二酮化合物:6,6'-二乙酰基-2,2'-二甲氧基-1,1'-联萘。并与相应的外消旋化合物进行了对比研究。2.对文献中报道的3,3'-二苯甲酰基-4,4'-二氨基-二苯基醚的合成路线进行了优化,简化了实验操作,提高了产率。3.分别以6,6'-二乙酰基-2,2'-二甲氧基-1,1'-联萘为二酮单体,3,3'-二苯甲酰基-4,4'-二氨基-二苯基醚为芳香邻氨基酮类单体,通过Friedlander法进行缩合聚合,并通过控制二酮单体的旋光纯度及投料方式得到一系列的聚合物。它们的特性粘度达到0.4至1.25dL/g。通过聚合物物性测定分析,认为:1)聚合物有较高的Tg、Td和耐溶剂性能。2)聚合物在紫外可见光谱、荧光光谱和红外光谱等方面基本相同。3)聚合物仅存在微区有序,结晶度很低,系非晶高聚物。4)由不同旋光纯度单体和不同投料方式得到的聚合物在粘度、固体形态和旋光活性方面表现出一定的差异。这种差异发生的原因还有待进一步研究。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本论文设计与合成出苯胺基元数分别为1,2,3,4,具有固定共轭长度和规整结构的新型氮硫共轭聚合物(PPSA;PPSAA;PPSTRA和PPSTEA),且聚合物在常见有机溶剂(THF,DMF和DMSO等)中具有良好的溶解性。随着苯胺基元的增加,其导电和掺杂特性逐渐接近于聚苯胺。含有苯胺四聚体的聚合物PPSTEA的光谱特性几乎与聚苯胺相同。PPSTEA有着良好的电化学可逆性和稳定性。只有当重复单元含有四个以上的苯胺基元(一个苯二胺基元和一个醌亚胺基元)时,才能进行质子酸掺杂,获得高电导率材料。与普通聚茉胺相同,含有四个苯胺基元的PPSTEA存在全还原态,中间氧化态和全氧化态,且三者之间可以进行相互转化。全还原态PPSTEA可进行碘氧化掺杂,其电导率约为10~(-2) S/cm。中间氧化态PPSTEA可进行质子酸掺杂,其盐酸掺杂后电导率可达10~0 S/cm。设计与合成出系列含有苯胺同系物的氮硫交替共轭聚全物,考察了亚砜 /质子酸体系变量参数对聚合反应的影响。位于苯环上的取代基为吸电子基团时,不利于聚合反应发生,所得聚合物分子量较低。取代基为推电子基团时,基本上不影响聚合反应的发生,所得聚合物的分子量与无取代基的PPSA相当。与此同时,合成了两种新型的超支化氮硫交替共轭聚合物。设计与合成出系列烷基和芳基取代的主分子量结构规整的氮硫交替共轭聚合物(PPSAR和PPSAOR),聚合物可溶于常见的有机溶剂且具有良好的成膜性。研究表明,这些聚合物均为富电性材料。PPSAR和PPSAOR都有着良好的空穴传输性能,代替有机空穴传输材料可大大改善其器件的综合性能。通过引入双键和苯硫醚基团对芳香二胺(TPD)分子进行结构修饰,成功地获得了系列高玻璃化转变温度(Tg)的新型空穴传输材料,所得系列TPD衍生物具有良好的空穴传输性能。同时还合成出了以三苯胺为核的Dendrimer有机化合物,发现其具有热稳定性好、三芳胺密度高和难以结晶等特点,可能成为一类具有潜在发展前途的有机空穴传输材料。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

以过氧化二异丙苯(DCP)为引发剂,甲基丙烯酸缩水甘油醋(GMA)为活性单体对HIPS进行熔融接枝,制得了功能化的高抗冲苯乙烯(HIPS-g-GMA)。比较HIPS-g-GMA和纯的HIPS的红外谱图,可以看到在HIPS-g-GMA的谱图上出现了一个新的吸收峰,即1730cm~(-1)处的C=O的伸缩振动吸收峰,它为接枝的GMA中的醋基基团的特征峰,因此可以确定GMA己经接枝到HIPS上。能谱分析也提供了相似的结论。同时研究了单体浓度和DCP用量对产物接枝率的影响。用化学滴定方法测定了接枝物的接枝率。随着GMA量的增加,接枝率也随之增加,当GMA用量超过14%时,接枝率趋于平缓;接枝率随DCP量增加而增加。采用DSC、SEM, WAXD, DMA及力学性能等方法和手段研究PBTIHIPS和PBT/HIPS-g-GMA二元共混体系的结晶、形态结构、动态力学性能及力学性能随组成的变化。当PBT为分散相,在增容体系中的PBT出现了分级结晶现象,结晶温度降低,这是由于分散相更为精细的结果。DMA结果表明,在PBTIHIP S-g-GMA体系中由于发生了化学反应,有接枝共聚物生成,体系中两个聚合物的Tg松弛均出现了较明显的降低,增容后体系的力学性能有显著提高。采用DSC, SEM, DMA及力学性能等方法和手段研究PBT/HIPS/HIPS-g-GMA三元共混体系的结构与性能。结果表明PBT无论是分散相还是连续相,HIPS-g-GMA的作用表现为:(1)对PBTIHIPS体系的熔融和结晶行为产生了明显的影响,使PBT的结晶速率变慢,结晶度降低,结晶尺寸分布变宽,结晶完善性变差;(2)改善了共混体系的相容性。未增容体系的形态结构为锐型界面,分散相粒子同基材相连接处清晰缝隙表明两组分间界面粘接很差,为典型的不相容两相形态结构;而加入功能化接枝物的体系的分散相粒子明显变小且分布均匀,甚至难以分辨两相结构的界面;(3)提高了体系的力学性能。在多官能团单体存在下,辐照对PBTIHIPS产生影响。(1)对共混体系的熔融和结晶行为产生影响,使共混体系中的PBT的熔点降低,熔程变宽,结品度下降,结晶速率变慢,结晶尺寸分布变宽,结晶完善性变差;(2)辐射引发多官能团单体反应,使体系的两个Tg松弛发生内移,表明体系的相容性得到改善;(3)当PBT为连续相时,辐射引发的多官能团单体反应对体系的形态结构影响不如化学增溶剂HIPS-g-GMA的效果显著,含有TMPTA的体系的形态结构要好于TAIL o当PBT为分散相,体系的形态结构变化很大,分散相尺寸明显变下小,且分布均匀;(4)辐射改性能提高PBT为分散相的共混体系的力学性能。利用DSC研究了不同成核剂对生物降解聚合物PHBV的结晶性能的彩响。结果表明:(1)添加的成核剂均能影响PHBV的结晶和熔融行为,提高PHBV的结晶速率和使PHBV的结晶更加完美;(2)所有的成核剂均能降低PHBV的结晶自由能;(3)成核剂对PHBV的影响依次为BN, talc, Tb_2O_3和La_2O_3。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本论文是以提高聚合物电致发光器件发光效率和热稳定性为目的,从材料设计的角度出发,以具有电子传输性能和热稳定性1,3,4-噁二唑和1,2,4-三唑为构造单元,采用Wittig聚合反应合成了一系列含有1,3,4-噁二唑和1,2,4-三唑的发光聚合物,在载流子平衡和实现红、绿、蓝三基色发光方面取得了一些有益的结果,主要包括以下几点:1.合成了一系列含1,2,4-三唑单元和三芳胺单元的PPV型电致发光聚合物。研究了不同空穴传输单元对发光聚合物热性能和电化学性质的影响,结果表明,所有聚合物都具有比较高的玻璃化转变和热分解温度,其中由于联苯二胺中含有刚性联苯结构,使得含联苯二胺结构的聚合物较其它发光聚合物具有更高的玻璃化转变温度,并且由于联苯结构的空间位阻效应,减小了聚合物分子链间的相互作用,使得溶液态和薄膜态的光致发光峰位符合的很好。2.对所合成含1,2,4-三唑和三芳胺的发光聚合物进行了电致发光性能表征。研究了不同器件结构对发光亮度的影响。结果表明,所有的器件发光波长都在515-530nm之间。单层结构器件工TO/Polymer/Mg:Ag启动电压在6-9伏之间。发光亮度只有45 cd/m左右。双层结构工TO/Polymer/PBD/Mg:Ag发光亮度在100 cd/m~2左右,启动电压与单层器件几乎没有变化。这说明尽管在聚合物中引入了拉电子的三唑基团,但聚合物依然表现为空穴传输为主,这是由于三芳胺基团空穴迁移率比三唑的电子迁移率高;而且三芳胺单元和三唑基单元在聚合物中所占的比例也是三芳胺高的原因。3.我们首次合成了4-苯基-3,5-二(4一氯甲基苯基)-1,2,4-三唑化合物。中国科学院长春应用化学研究所博士论文经过反复实验最终确定了适合反应的合成路线,采用氯苯做溶剂,过氧化苯甲酞做引发剂,硫酞氯为反应试剂。合成的产物收率高,而且容易分离;采用三丁基磷盐为聚合单体,合成出高分子量的聚合物,并且聚合物基本上是以反式烯烃双键为主。4.以合成蓝色发光聚合物为目的。合成了二种1,2,4-三唑和联咔吟(咔哇)共聚的即V型蓝色发光聚合物和一种含有1,2,4-三唑的PPP型蓝色发光聚合物材料。研究结果表明,将1,2,4-三唑引入到电致发光聚合物中,有效地提高了聚合物的Tg,与相类似结构的蓝色发光聚合物相比,其热性能改善明显。聚合物的发光波长都在450pm左右,是比较纯正的蓝色发光。5.合成了有1,2,4一三唑(1,3,4一噁二唑)和不同MEH-PPV单元长度的发光聚合物,研究了不同的MEH-PPV单元长度对发光波长和玻璃化转变温度的影响。结果表明,当MEH-PPV单元长度增加时,发光波长和玻璃化转变温度都有向MEH-PPV接近的趋势。而且,由于聚合物中1,2,4-三唑中4位氮原子被苯环取代后提高了杂环的稳定性。在相同的MEH-PPV单元长度时,聚合物主链为1,2,4-三唑结构比聚合物主链是1,3,理一噁二唑的玻璃化转变温度高。6. 含1,2,4-三唑单元和三个单元长度MEH-PPV单元的发光聚合物的单层器件(ITO/Polymer/Mg:Ag)发光亮度为320cd/m~2。同MEH-PPV的单层EL器件相比,在相同的制备工艺条件下,聚合物的电致发光器佩件的发光亮度比MEH-PPV的单层电致发光器件高20%。7.研究表明1,3,4-噁二唑单元和1,2,4一三唑单元嵌入到MEH-PPV主链后,它们并不像脂肪柔性链那样完全中断了聚合物共扼性的延伸,1,3,4一噁二唑单元和1,2,4一三唑单元依然是聚合物的共扼成分,只是中国科学院长春应用化学研究所博士论文降低了聚合物的有效共辘程度;并且由于1,2,4一三唑单元空间结构特性使得聚合物有效共扼程度比1,3,4一噁二唑单元降低的更多。8.合成了含有1,3,4一噁二唑单元和不同发光中心的小分子发光材料,我们发现带烷氧基取代的发光小分子发光颜色向长波方向移动。而带有联苯结构的发光小分子发光颜色向短波长方向移动。9.发光小分子的紫外吸收峰与1,3,4-噁二唑单元的发光峰位存在着非常大的重叠,当用1,3,4-噁二唑的紫外最大吸收波长激发发光材料时,1,3,4-噁二唑所发出的光能够被共扼的发光小分子吸收,存在着能量转移的现象。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

针对聚β一经基丁酸酷(PHB)加工窗口窄、脆性严重等不足,本论文采用在PHB分子链上接枝极性小分子顺丁烯二酸醉(MA)和将PHB与聚8一已内醋(PCL)进行醋交换的方法对其分子链进行化学修饰,试图通过PHB的分子结构变化改变其聚集态结构,从而使PHB在性能上有较大幅度的提高。获得的主要研究结果如下:1.本工作采用自由基引发聚合方法研究了PHB与MA的接枝反应。讨论了各种反应条件,如溶剂种类、单体浓度、引发剂浓度、反应时间和温度等对接枝反应的影响,确定了PHB接枝MA的最佳反应条件。采用对酸配基团进行化学滴定和~(13)C NMR方法对接枝产物的接枝率和结构进行了表征。结果表明,M八接枝到PHB的叔碳原子上,接枝率可以控制在0.2∽0.85%的范围内。2.采用DSC、WARD、POM和TGA等方法对PHB及其接枝顺丁烯二酸配共聚物(PHB-g-MA)的结晶行为、·热稳定性和生物降解特性进行了研究。结果表明:接枝产物的热稳定性明显优于PHB,热分解温度随接枝率不同提高了20-40℃。接枝后,MA基团阻碍了PHB的结晶,降低了PHB的结晶能力,使得PHB的结晶行为发生很大的变化。结晶温度降低,冷结晶温度升高,结晶焙略有下降。与PHB相比,PHB-g-MA的球晶环带结构变得清晰规整,随着接枝率的提高,球晶的环带宽度逐渐增加。在 DSC升温过程中PHB-g-MA发生重结晶,产生熔融双峰现象。但是WAXD的实验结果表明,PHB接枝MA并没有改变它的结晶结构。J . PHB接枝MA后,PHB的力学性能保持不变,并且MA基团能够促进PHB的生物降解和改善PHB的溶解性。4.采用FTIR和‘~1H NMR研究了PHB-g-MA的热分解机理。结果表明,PHB-g-MA的热分解机理与PHB相同:在高温条件下,PHB分子链的醋基部分形成六元环结构,断链时夺取亚甲基氢,生成竣基和双键两种端基。5.采用TGA方法选择不同的升温速率研究了PHB和不同接枝率的PHB-g-MA的热分解行为。PHB-g-MA的热分解温度随着接枝率的增加逐渐增加,然后逐渐下降。接枝率为0.56%时,PHB-g-MA的热分解温度最高,达到256.6℃。由Flynn-Wall-Ozawa方法得到的PHB的热分解活化能随着热失重率的增加而逐渐下降;而PHB-g-MA的热分解活化能随着接枝率和热失重率的不同,表现出不同的规律。接枝率为0.56%时,它的热分解活化能达到最大,为116.51kJ/mol.采用DSC方法对PHB和PHB-g-MA的等温结晶动力学和熔融行为进行了研究。用Avrarnl方程分析的结果表明,MA的引入使得PHB的结晶能力下降,但是并没有改变它的结晶成核机理和生长方式。随着接枝率的增加,结晶活化能增加。等温结晶后的PHB-g-MA表现出双熔融行为,这是在升温过程中发生熔融重结晶的结果。这种熔融行为不仅与样品的接枝率有关,而且也会受到结晶温度的影响7.在不同的冷却速率下用DSC方法研究了PHB和PHB-g-MA的非等温结晶动力学和熔融行为。结果表明,PHB和PHB-g-MA在非等温结晶过程中的结晶行为与冷却速率和接枝率密切相关。用Jeziorny方法改进的Avrami方程分析了PHB和PHB-g-MA的非等温结晶行为。当冷却速率较低时,PHB-9-MA的结晶机理与PHB不同。非等温结晶后的PHB-g-MA的熔融行为表现出熔融双峰,这是在升温过程中发生熔融重结晶的结果。8.用DSC方法研究了甲壳胺(CS)的热行为,测得CS的玻璃化转变温度(Tg)为80.4'C。考察了不同组成的PHB/CS和PHB-g-MA/CS共混体系的热行为。在PHB/CS=20/80, 40/60的共混体系中有单一的Tg出现;而 PHB-g-MA/CS=20/80, 40/60, 60/40的共混体系中也有单一的Tgo随着共混体系中PHB含量的减少,T_g逐渐增加,表明这些共混体系具有相容性。在共混体系中,随着CS含量的增加,PHB和PHB-g-MA组分的熔点和熔融烩显著降低。与对PHB相比,CS对PHB-g-MA熔点和熔融焙的抑止作用更大。9.通过FTIR, WAXD和XP S研究了相容共混体系中PHB, PHB-g-MA与CS组.分间的特殊相互作用。FTIR结果表明两组.分间形成较弱的氢键。这种氢键作用比CS自身分子内的氢键作用小,以至于很难“破坏”CS自身的聚集态结构,但是它可以“扰乱”PHB, PHB-g-MA和CS原有的结晶形貌。这一结果被WAXD进一步证实。XPS的结果清楚地表明分子间氢键作用是通过CS中的-NH_2与PHB-g-MA的C=O产生的。在PHB分子链中接枝MA基团,可以增强这种相互作用,使PHB-g-MAICS-共混体系的Nls和C1s结合能和谱型发生明显改变。10.用熔融法和溶液法将PHB和PCL进行醋交换反应,制备PHB和PCL的共聚醋(PHB-co-PCL).讨论了各种反应条件,如组分、反应时间和温度、催化剂种类和用量等对醋交换反应的影响。采用~(13)C NMR和FTIR方法对醋交换产物的结构进行了表征。结果表明,提高反应温度和延长反应时间有利于酷交换反应的发生。调整反应条件,共聚酷中PCL的含量可以控制在0.95-4.81%的范围内。在本实验条件下,制备的PHB-co-PCL均为嵌段共聚物。11.采用DSC、WARD、POM和TGA等方法对PHB-co-PCL的热行为、晶体结构和热稳定性进行了研究。随着酷交换量的增加,PHB-co-PCL的结晶行为发生很大的变化。冷结晶温度、结晶一温度和熔点均降低。并且 PHB-co-PCL在升温过程中表现出熔融双峰,这是共聚酷在结晶过程中结晶不完善导致在升温过程中发生熔融重结晶的结果,。PCL链段的引入并没有改变PHB的晶体结构,却使得共聚酷的结晶规整性下降。而且PHB-co-PCL的热稳定性基本保持不变。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

等离子体平板显示(PDP)是目前高清晰度、大屏幕平板显示中的佼佼者,使挂壁彩电成为现实,但其关键部分之一-PDP荧光粉的发展却存在着相当滞后的问题,因此急需开发出性能更好的PDP荧光粉或对现有荧光粉的性能进行改善。改善PDP荧光粉性能的重要手段之一是选择合适的合成路径,因此本文探索了软化学合成方法-水热法在合成 PDP荧光粉合成中的应用,同时也采用高温固相法、共沉淀法对PDP荧光粉进行了合成,通过对比分析探索合成方法对PDP荧光粉光谱性质的影响。分别采用水热法、高温固相法、共沉淀法对掺杂稀土发光离子的稀土正硼酸盐(Y,Gd)BO_3、正磷酸盐(La,Gd)PO4、矾酸盐(Y,Gd)VO4、矾磷酸盐Y(P,V)O_4和硼硅酸盐LoBSIOS进行了合成,并用XRD、IR、SEM、XPS、TG-DTA等手段对其结构进行了表征,对上述PDP荧光粉的真空紫外(VUV)光谱、紫外可见光谱及发射光谱性质进行了研究,得到了一些新的、有意义的结果。(1)首次采用水热法以稀土氧化物、氢氧化物或硝酸盐与硼酸为原料合成了(Y,Gd)BO_3:RE~(3+)(RE=Eu,Th)系列荧光粉,并对其VUV光谱特性进行了研究。sEM分析发现水热法以氢氧化物、硝酸盐合成的荧光粉粒度在100-200nm之间。XPS揭示不同基质中带结构具有一定的差异。光谱分析发现(Y,Gd)BO_3:RE~(3+)的VUV光谱中110-175nm范围内存在着基质硼酸根(B3场)的吸收带,该吸收带随基质中G矛"浓度的增大而增强并发生了红移,认为红移是由于基质中B-O反键轨道能量的变化引起的。对能量传递过程进行分析认为G矛十起到能量传递中间体的作用,使基质对激活剂的敏化效率随G矛十浓度的增大而提高。(Y,Gd)BO3:RE3+中基质敏化效率的提高也可能是由于基质敏化带的红移使Gd3十或RE3+更容易从基质中获得能量。我们认为作为PDP荧光粉Eu3+或Th3+在GdB03基质中的发光性能更好。对水热合成的(Y,Gd)BO3:Eu~(3+)荧光粉进行热处理发现,荧光粉的亮度随热处理温度的提高而明显增强,说明一定温度下热处理有利于提高荧光粉的发光性能,这可能是由于热处理后荧光粉的结晶度提高,内部缺陷减少。比较水热法、高温固相法和共沉淀法对荧光粉性质的影响时发现三种方法制备的荧光粉光谱特性基本一致,但高温固相法和共沉淀法制备的荧光粉粒度较大,形貌不规则。(2)采用水热法制备了不同G矛十浓度的PDP荧光粉(L a,Gd)Po4:RE3+(RE=Eu,Tb),发现以稀土硝酸盐溶液和伽玩)2HPO4为原料,在pH值为5·240oC下反应3天可以合成出结晶度较高的纯相。从SEM照片中观察到水热法制备的荧光粉为晶化很好的棒状晶体。对水热法制备的LaP04:Eu3+和GdPO4:Eu3+进行热处理后发现热处理后晶体的尺寸变小,但形貌没有发生明显的变化,发光性能效果稍有提高。首次对共沉淀法合成的不同Gd3+浓度的(La,Gd)PO4:KE3+(RE=Eu,Tb)荧光粉的VUV光谱进行了分析,并研究了Gd3+在能量传递过程中的作用,发现随基质中Gd3十浓度的增大,基质对发光离子的敏化效率提高,认为Gd3+起着能量传递中间体的作用。同时观察到(La,Gd)PO4:Eu3+中电荷迁移带随着Gd3+浓度的增大而发生红移,这也可能会导致基质对Eu3+敏化效率的提高。首次利于xPs分析了LaPO4和GdP04的价带结构,发现LaP04的价带由O2的2P能级构成,而GdPo4的价带则是由O2-的2p能级和Gd3+的4f能级共同构成,这种价带结构的差异可能对(La,Gd)PO4:RE3+在VUV区的吸收产生影响。(3)首次对水热法合成的(Y,Gd)VO4:Eu3+的VUV光谱进行了研究,观察到120-170nm范围内存在着vO43一离子团的弱吸收带,200nm处存在着来自2P(O)→4f(Y)或5d(均跃迁的激发带,20onm以后的激发宽带是由Eu3+的电荷迁移带与VO43-的吸收带重叠而成的。对不同Gd3+浓度的(Y,Gd)VO4:E矿"的vLJ'v光谱进行研究发现,在一定G矛+浓度范围内Gd3+的加入使基质vo43+对Eu3+的敏化效率提高。对(Y,Gd)VO4:Eu3+中的能量传递过程进行分析认为,(Y,Gd)vo4:Eus+中可能存在着VO_4~(3-)→Eu~(3+)和VO_4~(3-)(vuv)→Gd~(3+)→VO_4~(3-)(UV)→Eu~(3+)等几种能量传递方式,Gd3+起着能量传递中间体的作用。(4)首次采用水热法合成了Y(P,v)O4:Eu3"红色荧光粉,发现初始体系pH为12.5、在240℃下反应6天可以得到Y(P,V)o4:Eu3+纯相。结合XRD和SEM分析发现Y(P,V)O4:Eu3+荧光粉的粒径随VO3-4浓度的增大而增大,YPO4:Eu3+的粒径为100-150nm,而YVO4:Eu3+的粒径则为400-450nm。对水热法合成的Y(P, V)O4:Eu3+的VUV光谱进行研究发现基质对Eu3+的敏化效率随VO3-4户含量的增多而提高。通过比较发射光谱中~5D_0→~7F_2与~5D_0→~7F_1跃迁的强度发现二者强度之比随VO_4~(3-_浓度的增大而增大,说明荧光粉的色纯度随VO4含量的增多而更好。比较水热法和高温固相法合成的Y(P,V)O4:Eus"的VUV光谱发现水热法制备的荧光粉在真空紫外区的吸收较弱,说明水热法制备的荧光粉虽然粒度较小,形貌规则,但发光性能不如高温固相法制备的Y(P,V)O4:Eu3+荧光粉。(5)分别采用水热法和高温固相法制备了单掺稀土发光离子的LaBSIOS,并对它们的光谱性质进行了研究。通过比较产物的SEM照片发现水热法可以制备出粒度为2-3μm,形状近似于球形的产物,而高温固相法制备的样品形貌不规则,粒度分布范围广。对水热法制备的LaBSiO_5:Eu~(3+)进行红外光谱分析发现1300-400cm~(-1)范围内为BO_4基团和SiO_4基团的振动峰。首次对高温固相法制备的LaBSiO_5:Re~(3+)(RE=Eu,Sm,Th)的vuv光谱性质进行了分析,认为其VUV光谱中125-200nm范围内存在着BO_4基团的吸收带(125-165nm)和SiO4四面体的吸收带(165-183nm)。比较两种方法制备的荧光粉的光谱性质和亮度发现两种方法制备的荧光粉光谱性质基本一致,而水热法制备的LaBSiO_5:RE~(3+)(RE=Eu,Sm,Tb)在254nm紫外光激发下亮度相对较低。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1.热可交联聚酰亚胺/高性能热塑性树脂共混体系的研究聚苯硫醚[Poly(phenylene sulfide),PPS]是由刚性结构的苯环和柔性的硫醚连接起来,交替排列构成的线性高分子化合物,具有高的热稳定性、良好的耐化学药品性、优良的电绝缘性、耐老化性和阻燃性等综合性能优异的高性能树脂。聚醚矾〔Poly(ether sulfone),PES]是一种非结晶性的热塑性工程塑料一,具有优异的热稳定性、耐高温蠕变性及优异的物理机械性能。其高的玻璃化转变温度(Tg=225℃),使其可以在较高温度下作为结构材料使用。本论文研究了PPS/PES二元共混物的热性能和动态力学性能,并以热可控交联的低分子量多官能单体PMR-POI(聚醚酰亚胺)为界面增强剂,分别研究了POI与PPS、PES之间的接枝和/或交联反应,POI对PPS结晶行为的影响,POI对PES分子运动的影响和POI对PPS/PES共混体系的界面增强。主要结果如下:1.PPS/PES共混物相容性的特征在于选择性的部分相容,少量的非晶PPS分子可以扩散进入PES相区,相反的扩散过程则不会发生。2.PPS/PES共混物的热学性质和动态力学性能主要受连续相的控制。3.PPS相的性能主要受其结晶度的影响,因此能够改变其结晶度的因素均会改变PPS相的性质。4.光谱学和流变的证据表明,POI同PES,PPs共混过程中有接枝反应发生,分子链增长,分子量加大。这种接枝和/或交联反应的程度是热可控的。5.POI是PPS的增塑剂,成核剂和扩链剂,与POI共混使得PPS结晶速率增加,平衡熔点上升,表面折叠自由能降低。6;在PES/POI体系中Pol对PEs起到了增塑的作用,Tg降低,经高温热处理后Tg上升。因此,POI对PES性能的影响也是热可控的。7.PMR-POI能够在PPS/PES共混体系中有效地扩散并起到了降低分散相粒子的尺寸、增强界面的作用。它是该共混体系的有效界面增强剂。8."高温退火既能够提高扩散速率也能够提高反应速率;二者相互竞争。2.马来酸配封端溉碳酸丙撑酯的研究二氧化碳与环氧丙烷交替共聚物(polypropylene careonate,PPC)是由二氧化碳活化并与环氧丙烷共聚而成的一类可完全生物降解的新型高分子材料,具有巨大的潜在应用价值。本论文讨论了马来酸配封端的聚碳酸丙撑酯(MA-PPC)和未封端的PPC的粘弹性、流变行为以及热降解和热分解行为,并得出如下结论:1.马来酸配封端抑制了PPC解拉链式的热分解和无规链断裂热降解,PPC的热稳定性和力学性能得到提高。2.PPC和MA-PPC在玻璃化转变温度有相似的自由体积分数,PPC的Tg比MA-PPC稍低。虽然PPC和MA-PPC玻璃化转变表观活化能E。和平均松弛时间T随温度升高单调降低,但PPC的分子运动对温度更敏感,而MA-PPC较稳定。马来酸配封端改变了PPC分子运动的特征及松弛行为,许多实验证据证明,这是由于封端后的PPC大分子链间的相互作用增强及分子链缠结密度增加。3.MA-PPC在70℃左右会发生脱水,实现大分子偶联反应并得到变温红外光谱、分子量成倍增加及线膨胀数据的有力支持。4.用零剪切粘度几。的方法测得PPC及MA-PPC加工过程中的热降解温度,它们分别为150℃和175℃,在此温度以上,η0降低速率的增加归因于大分子的主链断裂以及解拉链反应。5.测得了PPC的临界缠结分子量,它几乎是MA-PPC相应值(6613)的3倍。这表明马来酸配封端不仅改善了PPC的熔体弹性,而且也大大增强了PPC的缠结密度以及分子链间的相互作用。6.在本实验条件下在氮气和空气的气氛中,MA-PPC同PPC的热降解和热分解行为几乎一致,即在PPc的加土过程可以忽略氧气对其的影响。7.虽然MA-PPC的玻璃化温度在40℃左右,但在40℃-120℃的温度区间内,MA-PPC达不到粘流状态。8.没有剪切力时在120℃-150℃,30分钟内,MA-PPC几乎没有降解,在静态条件下,低于170℃时,MA-PPC的解拉链式降解是十分轻微的,当温度超过170℃,PPC降解相当严重。9.在热机械力存在的情况下,发生无规断链的机会增加,无规断链又会加速解拉链降解,因此实际加工中的加工窗口比静态下窄,MIA-PPC的加工窗口应为130℃-160℃。10.MA-PPC的热分解过程是一步完成的,热分解温度随升温速率的加快而提高,并计算出热分解的表观活化能为623.3KJ/mol。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本论文的目的是研究由桥联二配的异构体合成的聚酰亚胺的性质,期望能发现既不牺牲热性能和机械性能又能改善加工性的新型聚酰亚胺材料。国内外目前在此方面的研究还较少,对异构化聚酰亚胺进行系统研究既填补了基础研究在此方面的空白,也对发展新的聚酰亚胺品种具有很天的实际意义。本论文在聚酞亚胺组过去工作的基础上,以氯代苯配为原料合成了二苯醚二配(ODPA)和二苯硫醚二酐(TDPA)两种桥联二配的3,3'-位和3,4'-位异构体(以桥键相对苯酐单元的位置命名),并得到了3,3’一ODPA和3,4'-ODPA的单晶,发现它们的顺反构象在单晶中都能稳定存在,其扭曲结构对聚合物的性质有很大影响。本论文还以三种ODPA异构体和三种TDPA异构体为基础合成了一系列的热塑性聚酰亚胺,对它们的性质进行了研究,发现以3,3'-位和3,4'-位二配为基础的聚酰亚胺在酚类溶剂和DMAc、DMF、NMP等极性溶剂中具有良好的溶解性,在DMSO和CHC13中部分溶解,而以4,4'-位二配为基础的聚酰亚胺则只溶于酚类溶剂。异构ODPA和TDPA系列基于同种二胺的聚酰亚胺薄膜都具有高的耐热性,后者的热氧化稳定性比前者稍高。以3,3'-位二酐为基础的聚酰胺酸热亚胺化的薄膜较脆,但由它们化学亚胺化后的聚酰亚胺粉末再溶解可得优良力学性能的韧膜。以3,4'-位二醉和4,4'-位二配为基础的聚酰胺酸热亚胺化薄膜具有相近的优异力学性质。对以4,4'-ODPA为主的共聚、共混聚酰胺酸热亚胺化薄膜力学性能的研究表明,当3,3'-OD队的含量超过30%时,薄膜脆性明显增加,而3,4'-ODPA以任何比例和4,4'-ODPA共聚、共混都能得到强韧的薄膜。异构TDPA系列聚酰亚胺的力学性能同ODPA系列相当。由异构ODPA和TDPA系列合成的聚酰亚胺动态力学性质规律相同。它们的玻璃化转变温度(Tg)均为3,3'-位的最高,3,4'-位次之,4,4'-位的最低。对于β转变,均为4,4'-位的Tβ最高,β转变峰也最强,3,4'-位的Tβ较低,β转变峰也稍弱,3,3'-位的β转变最弱,没有明显的β转变峰。由ODPA系列异构体同ODA共聚、共混的热酞亚胺化聚酰亚胺薄膜除3,3'-ODPA含量为75%时膜脆DMTA未测外,其他共聚、共混聚酰亚胺薄膜的Tg均随4,4'-位含量的增加而降低,Tp随4,4'-位含量的增加而升高,β转变峰的强度也随4,4'-位含量的增加而增大,Tp(K)/Tg(K)数值均在0.68~0.75之间。含3,3'-位和3,4'-位二配的聚酰亚胺薄膜在Tg过后不久即被迅速拉长至伸长率超过30%(DMTA仪器的设限),而由4,4'-位二酐合成的聚酰亚胺则到450℃伸长率均未超30%。经对ODPA系列异构体同·ODA聚合的聚酰亚胺薄膜拉伸前后的WAXD研究发现,4,4'-ODPA/ODA的薄膜在拉伸前后结晶峰无变化,表明Tg前后其分子间均有较大的作用力,其他两种膜拉伸后有明显的取向结晶现象,由此可见它们在Tg后的迅速伸长可能是因为其扭曲结构使得分子链堆积疏松,链段的活动性随自由体积的增大而迅速增强。对中等分子量的异构ODPA和TDPA系列同ODA聚合的聚酰亚胺的流变性质研究发现,3,4'-位聚酰亚胺拥有最低的熔体粘度,可能因为其分子堆积比4,4'-位的疏松,而链刚性又比3,3'-位的弱。由异构ODPA和TDPA系列与不同二胺和封端剂合成的PMR型热固性聚酰亚胺流变性质规律不尽相同。异构ODPA/MDA/NA的PMR树脂中3,3'-位树脂熔融粘度谷底数值较高加工窗口较窄。异构ODR入/ODA/NA的PMR树脂中三者熔融粘度谷底相同,均在SPa·s左右,3,3'-位和3,4'-位树脂的加工窗口几乎重合,4,4'-位树脂加工窗口随不同次制样的结晶性不同而有所变化。同异构ODPA/ODA/NA的PMR树脂相比,异构TDPA/ODA/NA系列的熔融粘度谷底数值稍高(10~14Pa·s之间),但也彼此相同,无异构体间的差别,3,4'-位和4,4,一位树脂加工窗口均较宽且4,4'-位树脂无明显结晶出现,3,3'-位窗日最窄。异构TDPA/ODA/PEPA的PMR树脂熔融粘度谷底比NA封端的低,降到2-4Pa·s左右,且加工窗口大大加宽,异构体之间差别不大,熔融粘度谷底数值比4,4'-ODPA/ODA/PEPA树脂低,窗口也宽。以3,4’-ODA取代4,4'-ODA后,由4,4'-TD队、3,4'-TD队、3,4'-ODPA和4,4’-OD队合成的PE以封端PMR树脂均拥有1 Pa·s左右的熔体粘度谷底。4,4'-ODPA/3,4'-ODA/PEPA结晶性较强,加工窗口在290℃以上,其他三种树脂的加工窗口都可扩宽到270~350℃,可望适合用RrM工艺加工高性能的复合材料。总体看来,异构ODPA和TDPA系歹lJ的PMR树脂中,由4,4'-ODPA合成的树脂有较强的结晶性,由3,3'-位二配合成的树脂熔体粘度和加工窗口多有变化,但由4,4'-TDPA和3,4'-位二酐合成的不同种类树脂和其异构体相比均具有较低的熔体粘度谷底和较宽的加工窗口,可见异构TDPA系列的热固性聚酰亚胺熔融加工性比异构ODPA系列好。