948 resultados para Sulfur-hexafluoride Washout
Resumo:
Background: Trichothiodistrophy (TTD) is a rare autosomal recessive condition that is characterized by a specific congenital hair shaft dysplasia caused by deficiency of sulfur associated with a wide spectrum of multisystem abnormalities. In this article, we study clinical, microscopic, and ultrastructural findings of 20 patients with TTD with the aim to add further insights regarding to this rare condition. Additionally, analyses of our results are compared with those extracted from the literature in order to enhance its comprehensibility. Materials and Methods: Twenty cases of TTD were included: 7 from Mexico and 14 from Spain. Clinical, microscopic, scanning electron microscopy (SEM) studies and X-ray microanalysis (XrMa) were carried out in all of them. Genetic studies were performed in all seven Mexican cases. Patients with xeroderma pigmentosum and xeroderma pigmentosum/TTD-complex were excluded. Results: Cuticular changes and longitudinal crests of the hair shaft were demonstrated. These crests were irregular, disorganized, following the hair longest axis. Hair shaft sulfur deficiency was disposed discontinuously and intermittently rather than uniformly. This severe decrease of sulfur contents was located close to the trichoschisis areas. Only five patients did not show related disturbances. Micro-dolichocephaly was observed in five cases and represented the most frequent facial dysmorphism found. It is also remarkable that all patients with urologic malformations also combined diverse neurologic disorders. Moreover, three Mexican sisters demonstrated the coexistence of scarce pubic vellus hair, developmental delay, onychodystrophy, and maxillar/mandibullar hypoplasia. Conclusions: TTD phenotype has greatly varied from very subtle forms to severe alterations such as neurologic abnormalities, blindness, lamellar ichthyosis and gonadal malformations. Herein, a multisystem study should be performed mandatorily in patients diagnosed with TTD.
Resumo:
A system for disposal and recovery of the main effluents and chemical waist from isotope separation plants and enriched compounds-15N and 34S production has been carried out at the Stable Isotope Laboratory (LIE) of the CENA/USP. Around four hundred thousand liters of effluents has been recovered yearly. Among the recovered chemical wastes, the more relevant are: ammonia; brome; ammonium and sodium sulfate; sodium hydroxide; sulfur dioxide; and hydrochloric acid. Chemical wastes containg recoverable heavy metals (Ag, Cr and Cu) and solvents (methanol, ethanol and acetone) are processed and recovered. Gaseous emissions, mainly H2S are used for recovery of heavy metals solutions. The minimization of the residues waters, as well the reduction of electric energy consume was established using a water deionization system. A cost/effect balance of the process is reported.
Resumo:
The purpose of this work was the production of ammonium sulfate double labeled with 15N and 34S ((15NH4)2(34)SO4)), employing the ion exchange technique in two different processes. The first one was carried out using Na2(34)SO4 and (15NH4)2SO4 previously enriched. It was possible to obtain about 54g of (15NH4)2(34)SO4 from 70.0g of Na2(34)SO4 and 64.2g of (15NH4)2SO4 . The second method involved the production of H2(34)SO4, by ion exchange, and its subsequent reaction with 15NH3(aq), using a distillation system, to yield 58 g of (15NH4)2(34)SO4 from 43.1 g of H2(34)SO4.
Resumo:
The goal of this article is to discuss the application of comprehensive two-dimensional gas chromatography (GCxGC) to petrochemical samples. The use of GCxGC for petroleum and petroleum derivatives characterization, through group type analysis, or BTEX (benzene, toluene, ethylbenzene, xylenes), total aromatic hydrocarbons, polyaromatic hydrocarbons, sulfur-containing, oxygen-containing, and nitrogen-containing compounds is presented. The capability of GCxGC to provide additional specific chemical information regarding petroleum processing steps, such as dehydrogenation of linear alkanes, the Fischer-Tropsch process, hydrogenation and oligomerization is also described. In addition, GCxGC analyses of petrochemical biomarkers and environmental pollutants derived from petrochemicals are reported.
Resumo:
Thermogravimetry was applied to investigate the effects of temperature and atmosphere on conversion of sulfur dioxide (SO2) absorbed by limestone. Ranges of temperature and particle size were studied, typical of fluidized-bed coal combustion. Isothermal experiments were performed at different temperatures (between 750 and 950 ºC) under local atmospheric pressure (~ 697 mmHg) in dynamic atmospheres of air and nitrogen. The maximum conversion was 29% higher in nitrogen atmosphere than in air atmosphere. The optimum conversion temperature was found at 831 ºC in air atmosphere and at 894 ºC in nitrogen atmosphere.
Resumo:
A novel type of heavy metal adsorbent was prepared by the covalent grafting of thioglycolic acid molecules on a silica gel surface previsiouly modified with 3-aminopropyltrimethoxysilane. The amount of thioglycolic acid immobilized was 1.03 mmol per gram of silica. This material displayed a chelating moiety containing nitrogen, sulfur, and oxygen basic centers which are potentially capable of extracting from aqueous solutions cations such as Cu(II), Ni(II), Co(II), influenced by pH and ionic strength. This process of extraction was carried out by the batch method when similar chemisorption isotherms were observed for all cations. A modified Langmuir equation describes the experimental data.
Resumo:
The activity of copper-doped hematite in the SCR with propane, in the presence of oxygen, was evaluated in this work. It was found that copper sulfate led to the production of solids with different specific surface areas depending on the amount of copper. The sulfur and copper species were mainly located on the surface. The copper-containing catalysts were more active in the reduction of nitrogen oxides and less active in the propane oxidation as compared to pure hematite. This behavior was assigned to an association of both sulfur and copper species to produce new sites active for NO reduction.
Resumo:
Sulfur emission in coal power generation is a matter of great environmental concern and limestone sorbents are widely used for reducing such emissions. Thermogravimetry was applied to determine the effects of the type of limestone (calcite and dolomite), particle size (530 and 650 µm) and atmosphere (air and nitrogen) on the kinetics of SO2 sorption by limestone. Isothermal experiments were performed for different temperatures (650 to 950 ºC), at local atmospheric pressure. The apparent activation energies, as indicated by the slope of the Arrhenius plot, resulted between 3.03 and 4.45 kJ mol-1 for the calcite, and 11.24 kJ mol-1 for the dolomite.
Resumo:
The analytical method developed to evaluate tamoxifen in dog plasma samples was precise, accurate, robust and linear in the range of 5-200 ng/mL. The limits of detection and quantification were 0.981 ng/mL and 2.97 ng/mL, respectively. Besides, the intra-day precision and accuracy variations were 8.78 and 10.16%, respectively. Tamoxifen concentrations were analyzed by combined reversed phase liquid chromatography and UV detection (lambda=280 nm). The study was conducted using an open randomized 2-period crossover balanced design with a 1-week washout period between the doses. This simple, rapid and selective method is suitable for pharmacokinetic, bioavailability and bioequivalence studies.
Resumo:
There is presently much interest in the clean and efficient generation of energy by proton exchange membrane fuel cells (PEMFC), using hydrogen as fuel. The generation of hydrogen by the reforming of other fuels, anaerobic fermentation of residual waters and other methods, often produce contaminants that affect the performance of the cell. In this work, the effect of gaseous SO2 and NO2 on the performance of a H2/O2 single PEMFC is studied. The results show that SO2 decreases irreversibly the performance of the cell under operating conditions, while NO2 has a milder effect that allows the recovery of the system.
Resumo:
A procedure for determining of the isotope ratio 235U/238U in UF6 samples was established using a quadrupole mass spectrometer with ionization by electron impact. The following items were optimized in the spectrometer: the parameters in the ion source that provided the most intense peak, with good shape, for the most abundant isotope; the resolution that reduced the non linear effects and the number of analytical cycles that reduced the uncertainty in the results. The measurement process was characterized with respect to the effects of mass discrimination, linearity and memory effect.
Resumo:
Hydrotalcite-like compounds having Mg partially replaced by Cu or Mn were prepared and used as precursors for two mixed oxides (Cu-OM50 and Mn-OM50) that were evaluated for SOx removal in the presence of O2, NO and CO. Under SO2/O2 reaction system, SOx removal was slightly higher over Cu-OM50. The addition of CO and NO to the feed markedly hindered the SO2 oxidation over Cu-OM50 while no significant effect was observed for Mn-OM50. For the regeneration step, the use of propane instead of H2 reduces regeneration capacity, mainly for Cu-OM50. Mn-OM50 was less affected by the feed composition, suggesting that it was a promising additive for SOx removal.
Resumo:
Increased production of biomass is currently the only immediately accessible alternative for large-scale carbon sequestration and it can produce large amounts of food, fuel and raw materials for the chemical industry that can in turn growingly replace oil as a source of organic building blocks and also of hydrogen and sulfur. Development of processes for biomass and abundant minerals transformation into chemical raw materials should now benefit from large inputs from nanotechnologies, biotechnologies, information and micro-reactor technologies. Success in R&D&Innovation along this line can yield new products and processes needed to perform desirable functions within a sustainable development paradigm.
Resumo:
Dendrochemistry is based on the determination of elements retained in tree rings, which can be useful to characterize environmental occurrences. This work shows elemental mappings obtained by EDXRF of the cross section of a tree stem. The tree is originated from a polluted area in Campinas, São Paulo. Some profiles, as the sulfur one, show variations that can be attributed to external contributions, whereas the silicon one can be inferred to a protection defense natural mechanism. Besides being simultaneous and multielementar, the main advantages here are its performance through a non-destructive sample treatment and the ease of operation of XRF equipments.
Resumo:
WO3-ZrO2 catalysts promoted with Pt and Pd were tested as paraffin isomerization catalysts using n-hexane as model compound. Sulfur and amine poisoning and regeneration tests were used to assess the impact of the addition of Pt and Pd on the deactivation resistance and regenerability. Pt and PtPd catalysts were the most active for n-hexane isomerization. The low activity of the Pd catalyst was attributed to poor Pd metal properties when supported over WO3-ZrO2 and to a decrease of the number of BrQnsted acid sites. PtPd was the only catalyst capable of full regeneration after S poisoning. Amine poisoning completely supressed the isomerization activity and the original activity could only be restored by calcination and reduction.