980 resultados para Skin color change
Resumo:
Objective: The aim of this study was to evaluate the effects of estrogen and isoflavones on postmenopausal skin morphological parameters. Study design: A randomized, double-blind, estrogen-controlled trial was performed on postmenopausal women treated in the Gynecology Department of the Federal University of Sao Paulo. This study was designed to analyze the effects of topical administration of estradiol and isoflavones on facial skin for 24 weeks. The participants were divided into two groups: G1-17-betaestradiol 0.01% (n = 18) and G2-isoflavones 40% (genistein 4%, n = 18). Skin biopsies were performed on each patient before and after the treatment. The skin samples were processed for histological analysis, stained with haematoxylin and eosin, and examined using light microscopy. Results: After 24 weeks of treatment, the estradiol group had a significant increase in skin parameters analyzed compared to the isoflavone group and to the baseline measurements: epidermal thickness (a 75% increase in the estrogen group and 20% in the isoflavone group), number of dermal papillae (a rise of 125% with estrogen, no significant gain with isoflavones), fibroblasts (a 123% accretion with estradiol, no significant gain with isoflavones), and vessels (a 77% increase with estrogen and 36% with isoflavones). Conclusion: Our data suggest that estrogens may have a stronger effect on histomorphometrical parameters than isoflavones. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Objective: This is a clinical study of our experience using pedicle perforator flaps to cover skin defects in the middle and distal segment of the leg. Design: Prospective study. Setting: University hospital. Patients/Intervention: Twenty-four patients underwent treatment of a skin defect in the middle or distal segment of the leg by means of pedicled flaps based on perforating arteries. The perforating arteries were located before the operation by means of echo-Doppler examination. The flaps were planned in propeller fashion (21 cases) and as advancement (three cases). Main Outcome Measurements: The results were evaluated according the origin of perforator flap, size of the flap, and donor area and viability of the flap. The success rate of the echo-Doppler to identify the location of perforator vessel was also evaluated. Results: In nine cases, the perforating vessels originated from the fibular artery, in 10 the posterior tibial artery, and in five the anterior tibial artery. The mean size of the flaps was 5 cm in width by 12 cm in length. The success rate using an echo-Doppler was 87%. The flaps were fully viable in 20 cases and partially viable in four cases. Conclusion: On the basis of these results, it is concluded that perforating flaps are a good choice of treatment for skin losses, especially in the distal segment of the leg, and could be an alternative option for the use of free microsurgical flaps.
Resumo:
Paraffin-embedded samples commonly stored at educational and research institutions constitute tissues banks for follow-up or epidemiological studies; however, the paraffin inclusion process involves the use of substances that can cause DNA degradation. In this study, a PCR protocol was applied to identify Leishmania strains in 33 paraffin-embedded skin samples of patients with American cutaneous leishmaniasis. DNA was obtained by the phenol-chloroform protocol following paraffin removal and then used in PCR or nested PCR based on the nucleotide sequence of the small subunit ribosomal RNA (SSU rDNA). The amplicons obtained were cloned and sequenced to determine the single nucleotide polymorphism that distinguishes between different Leishmania species or groups. This assay allowed to distinguish organisms belonging to the subgenus Viannia and identify L. (Leishmania) amazonensis and L. (L.) chagasi of the Leishmania subgenus. Of the 33 samples, PCR and nested PCR identified 91% of samples. After sequencing the PCR product of 26 samples, 16 were identified as L. (L.) amazonensis, the other 10 contain organisms belonging to the L. (Viannia) sub-genus. These results open a huge opportunity to study stored samples and promote relevant contributions to epidemiological studies.
Resumo:
Background: CD8+ T cells and natural killer (NK) cells are involved in the immune response against some pathogens. For this purpose, we investigated the in situ paracoccidioidomycosis (PCM) immune response addressing the participation of NK cells, CD8+ T cells, perforin and granzyme B expression. Methods: Sixty biopsies of PCM skin and mucosa were classified according to the presence of compact granulomas (G1), poorly organized granulomas (G2) and both kinds in the same lesion (G3). CD8+ T cells, NK cells, perforin and granzyme B were showed by immunohistochemistry. Results: CD8+ T cells were increased over NK cells in cutaneous G1 and G2 lesions. There was no difference regarding such cells in G3 lesions, although they were abundant in such lesions. In mucosa, CD8+ T cells were increased in number over NK cells in all groups. Granzyme B in skin increased in G2 and G3. The number of granzyme did not differ in mucosal lesions in the three groups. Conclusions: CD8+ T cells and NK cells play a role in PCM cutaneous and mucosal lesions. The predominance of CD8+ T cells over NK cells may represent an effective response against the fungi. Moreover, the high number of granzyme B expressing cells corroborates this possibility.
Resumo:
Dendritic cells belong to a family of antigen-presenting cells that are localized at the entry sites, such as skin and mucosa. Dendritic cells are related to immune surveillance function. The role of Langerhans cells in the pathogenesis of skin infectious diseases is well studied; however, there are few articles addressing involvement of factor XIIIa-positive dermal dendrocytes (FXIIIa+ DD) in such processes. FXIIIa+ DDs are bone marrow-monocytic lineage-derived cells and members of the skin immune system. Due to their immune phenotype and functional characteristics, they are considered complementary cells to Langerhans cells in the process of antigen presentation and inducing immune response. To verify the interaction between FXIIIa+ DD and Leishmania amastigotes, 22 biopsies of American tegumentary leishmaniasis (ATL) skin lesions were subjected to double staining technique with anti-factor XIIIa and anti-Leishmania antibodies. FXIIIa+ DDs were hypertrophic and abundant in the cutaneous reaction of ATL. FXIIIa+ DDs harboring parasites were observed in I I of 22 skin biopsies. The data obtained suggest that FXIIIa+ DD plays a role in the pathogenesis of ATL skin lesion as host cell, immune effector, and/or antigen-presenting cell.