964 resultados para Scheduling problem
Resumo:
The need for integration in the supply chain management leads us to considerthe coordination of two logistic planning functions: transportation andinventory. The coordination of these activities can be an extremely importantsource of competitive advantage in the supply chain management. The battle forcost reduction can pass through the equilibrium of transportation versusinventory managing costs. In this work, we study the specific case of aninventory-routing problem for a week planning period with different types ofdemand. A heuristic methodology, based on the Iterated Local Search, isproposed to solve the Multi-Period Inventory Routing Problem with stochasticand deterministic demand.
Resumo:
Donors often rely on local intermediaries to deliver benefits to target beneficiaries. Each selected recipient observes if the intermediary under-delivers to them, so they serve as natural monitors. However, they may withhold complaints when feeling unentitled or grateful to the intermediary for selecting them. Furthermore, the intermediary may distort selection (e.g. by picking richer recipients who feel less entitled) to reduce complaints. We design an experimental game representing the donor s problem. In one treatment, the intermediary selects recipients. In the other, selection is random - as by an uninformed donor. In our data, random selection dominates delegation of the selection task to the intermediary. Selection distortions are similar, but intermediaries embezzle more when they have selection power and (correctly) expect fewer complaints.
Resumo:
We address the performance optimization problem in a single-stationmulticlass queueing network with changeover times by means of theachievable region approach. This approach seeks to obtainperformance bounds and scheduling policies from the solution of amathematical program over a relaxation of the system's performanceregion. Relaxed formulations (including linear, convex, nonconvexand positive semidefinite constraints) of this region are developedby formulating equilibrium relations satisfied by the system, withthe help of Palm calculus. Our contributions include: (1) newconstraints formulating equilibrium relations on server dynamics;(2) a flow conservation interpretation of the constraintspreviously derived by the potential function method; (3) newpositive semidefinite constraints; (4) new work decomposition lawsfor single-station multiclass queueing networks, which yield newconvex constraints; (5) a unified buffer occupancy method ofperformance analysis obtained from the constraints; (6) heuristicscheduling policies from the solution of the relaxations.
Resumo:
We develop a mathematical programming approach for the classicalPSPACE - hard restless bandit problem in stochastic optimization.We introduce a hierarchy of n (where n is the number of bandits)increasingly stronger linear programming relaxations, the lastof which is exact and corresponds to the (exponential size)formulation of the problem as a Markov decision chain, while theother relaxations provide bounds and are efficiently computed. Wealso propose a priority-index heuristic scheduling policy fromthe solution to the first-order relaxation, where the indices aredefined in terms of optimal dual variables. In this way wepropose a policy and a suboptimality guarantee. We report resultsof computational experiments that suggest that the proposedheuristic policy is nearly optimal. Moreover, the second-orderrelaxation is found to provide strong bounds on the optimalvalue.
Resumo:
We address the problem of scheduling a multi-station multiclassqueueing network (MQNET) with server changeover times to minimizesteady-state mean job holding costs. We present new lower boundson the best achievable cost that emerge as the values ofmathematical programming problems (linear, semidefinite, andconvex) over relaxed formulations of the system's achievableperformance region. The constraints on achievable performancedefining these formulations are obtained by formulatingsystem's equilibrium relations. Our contributions include: (1) aflow conservation interpretation and closed formulae for theconstraints previously derived by the potential function method;(2) new work decomposition laws for MQNETs; (3) new constraints(linear, convex, and semidefinite) on the performance region offirst and second moments of queue lengths for MQNETs; (4) a fastbound for a MQNET with N customer classes computed in N steps; (5)two heuristic scheduling policies: a priority-index policy, anda policy extracted from the solution of a linear programmingrelaxation.
Resumo:
The set covering problem is an NP-hard combinatorial optimization problemthat arises in applications ranging from crew scheduling in airlines todriver scheduling in public mass transport. In this paper we analyze searchspace characteristics of a widely used set of benchmark instances throughan analysis of the fitness-distance correlation. This analysis shows thatthere exist several classes of set covering instances that have a largelydifferent behavior. For instances with high fitness distance correlation,we propose new ways of generating core problems and analyze the performanceof algorithms exploiting these core problems.
Resumo:
This paper studies the equilibrating process of several implementationmechanisms using naive adaptive dynamics. We show that the dynamics convergeand are stable, for the canonical mechanism of implementation in Nash equilibrium.In this way we cast some doubt on the criticism of ``complexity'' commonlyused against this mechanism. For mechanisms that use more refined equilibrium concepts,the dynamics converge but are not stable. Some papers in the literatureon implementation with refined equilibrium concepts have claimed that themechanisms they propose are ``simple'' and implement ``everything'' (incontrast with the canonical mechanism). The fact that some of these ``simple''mechanisms have unstable equilibria suggests that these statements shouldbe interpreted with some caution.
Resumo:
This article builds on the recent policy diffusion literature and attempts to overcome one of its major problems, namely the lack of a coherent theoretical framework. The literature defines policy diffusion as a process where policy choices are interdependent, and identifies several diffusion mechanisms that specify the link between the policy choices of the various actors. As these mechanisms are grounded in different theories, theoretical accounts of diffusion currently have little internal coherence. In this article we put forward an expected-utility model of policy change that is able to subsume all the diffusion mechanisms. We argue that the expected utility of a policy depends on both its effectiveness and the payoffs it yields, and we show that the various diffusion mechanisms operate by altering these two parameters. Each mechanism affects one of the two parameters, and does so in distinct ways. To account for aggregate patterns of diffusion, we embed our model in a simple threshold model of diffusion. Given the high complexity of the process that results, strong analytical conclusions on aggregate patterns cannot be drawn without more extensive analysis which is beyond the scope of this article. However, preliminary considerations indicate that a wide range of diffusion processes may exist and that convergence is only one possible outcome.
Resumo:
The speed and width of front solutions to reaction-dispersal models are analyzed both analytically and numerically. We perform our analysis for Laplace and Gaussian distribution kernels, both for delayed and nondelayed models. The results are discussed in terms of the characteristic parameters of the models
Resumo:
Abstract