927 resultados para SOLID-STATE LASER
Resumo:
We present calculations for the static structure and ordering properties of two lithium-based s-p bonded liquid alloys, Li-Na and Li-Mg. Our theoretical approach is based on the neutral pseudoatom method to derive the interatomic pair potentials, and on the modified-hypernetted-chain theory of liquids to obtain the liquid static structure, leading to a whole combination that is free of adjustable parameters. The study is complemented by performing molecular dynamics simulations which, besides checking the theoretical static structural results, also allow a calculation of some dynamical properties. The obtained results are compared with the available experimental data.
Resumo:
The self-intermediate dynamic structure factor Fs(k,t) of liquid lithium near the melting temperature is calculated by molecular dynamics. The results are compared with the predictions of several theoretical approaches, paying special attention to the Lovesey model and the Wahnstrm and Sjgren mode-coupling theory. To this end the results for the Fs(k,t) second memory function predicted by both models are compared with the ones calculated from the simulations.
Resumo:
The dependence of the dynamic properties of liquid metals and Lennard-Jones fluids on the characteristics of the interaction potentials is analyzed. Molecular-dynamics simulations of liquids in analogous conditions but assuming that their particles interact either through a Lennard-Jones or a liquid-metal potential were carried out. The Lennard-Jones potentials were chosen so that both the effective size of the particles and the depth of the potential well were very close to those of the liquid-metal potentials. In order to investigate the extent to which the dynamic properties of liquids depend on the short-range attractive interactions as well as on the softness of the potential cores, molecular-dynamics simulations of the same systems but assuming purely repulsive interactions with the same potential cores were also performed. The study includes both singleparticle dynamic properties, such as the velocity autocorrelation functions, and collective dynamic properties, such as the intermediate scattering funcfunctions, and collective dynamic properties, such as the intermediate scattering functions, the dynamic structure factors, the longitudinal and transverse current correlations, and the transport coefficients.
Resumo:
Atribution as a function of the time are analyzed and this study leads to a deeper knowledge of the microscopic processes involved in the magnetic relaxation
Resumo:
By an analysis of the exchange of carriers through a semiconductor junction, a general relationship for the nonequilibrium population of the interface states in Schottky barrier diodes has been derived. Based on this relationship, an analytical expression for the ideality factor valid in the whole range of applied bias has been given. This quantity exhibits two different behaviours depending on the value of the applied bias with respect to a critical voltage. This voltage, which depends on the properties of the interfacial layer, constitutes a new parameter to complete the characterization of these junctions. A simple interpretation of the different behaviours of the ideality factor has been given in terms of the nonequilibrium charging properties of interface states, which in turn explains why apparently different approaches have given rise to similar results. Finally, the relevance of our results has been considered on the determination of the density of interface states from nonideal current-voltage characteristics and in the evaluation of the effects of the interfacial layer thickness in metal-insulator-semiconductor tunnelling diodes.
Resumo:
We present a theoretical study of the quantum depinning of domain walls. Our approach extends earlier work by Stamp and confirms his suggestion that quantum tunneling of domain walls in ferromagnets may reveal itself at a macroscopic level in a manner similar to the Josephson effect in superconductors. The rate of tunneling of a domain wall through a barrier formed by a planar defect is calculated in terms of macroscopic parameters of the ferromagnet. A universal behavior of the WKB exponent in the limit of small barriers is demonstrated. The effect of dissipation on the tunneling rate is studied. It is argued that quantum diffusion of domain walls apparently explains a nonthermal magnetic relaxation observed in some materials at low temperatures.
Resumo:
Antifreeze proteins (AFPs) inhibit ice growth at sub-zero temperatures. The prototypical type-III AFPs have been extensively studied, notably by X-ray crystallography, solid-state and solution NMR, and mutagenesis, leading to the identification of a compound ice-binding surface (IBS) composed of two adjacent ice-binding sections, each which binds to particular lattice planes of ice crystals, poisoning their growth. This surface, including many hydrophobic and some hydrophilic residues, has been extensively used to model the interaction of AFP with ice. Experimentally observed water molecules facing the IBS have been used in an attempt to validate these models. However, these trials have been hindered by the limited capability of X-ray crystallography to reliably identify all water molecules of the hydration layer. Due to the strong diffraction signal from both the oxygen and deuterium atoms, neutron diffraction provides a more effective way to determine the water molecule positions (as D(2) O). Here we report the successful structure determination at 293 K of fully perdeuterated type-III AFP by joint X-ray and neutron diffraction providing a very detailed description of the protein and its solvent structure. X-ray data were collected to a resolution of 1.05 Å, and neutron Laue data to a resolution of 1.85 Å with a "radically small" crystal volume of 0.13 mm(3). The identification of a tetrahedral water cluster in nuclear scattering density maps has allowed the reconstruction of the IBS-bound ice crystal primary prismatic face. Analysis of the interactions between the IBS and the bound ice crystal primary prismatic face indicates the role of the hydrophobic residues, which are found to bind inside the holes of the ice surface, thus explaining the specificity of AFPs for ice versus water.