891 resultados para SOLID STATE REACTION
Resumo:
This work investigates the harmonic distortion (HD) in 2-MOS balanced structures composed of triple gate FinFETs. HD has been evaluated through the determination of the third-order harmonic distortion (HD3), since this represents the major non-linearity source in balanced structures. The 2-MOS structures with devices of different channel lengths (L) and fin widths (W(fin)) have been studied operating in the linear region as tunable resistors. The analysis was performed as a function of the gate voltage, aiming to verify the correlation between operation bias and HD3. The physical origins of the non-linearities have been investigated and are pointed out. Being a resistive circuit, the 2-MOS structure is generally projected for a targeted on-resistance, which has also been evaluated in terms of HD3. The impact of the application of biaxial strain has been studied for FinFETs of different dimensions. It has been noted that HD3 reduces with the increase of the gate bias for all the devices and this reduction is more pronounced both in narrower and in longer devices. Also, the presence of strain slightly diminishes the non-linearity at a similar bias. However, a drawback associated with the use of strain engineering consists in a significant reduction of the on-resistance with respect to unstrained devices. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This work focuses on the impact of the source and drain Selective Epitaxial Growth (SEG) on the performance of uniaxially strained MuGFETs. With the channel length reduction, the normalized transconductance (gm.L./W) of unstressed MuGFETs decreases due to the series resistance and short channel effects (SCE), while the presence of uniaxial strain improves the gm. The competition between the series resistance (R(s)) and the uniaxial strain results in a normalized gm maximum point for a specific channel length. Since the SEG structure influences both R(s) and the strain in the channel, this work studies from room down to low temperature how these effects influence the performance of the triple-gate FETs. For lower temperatures, the strain-induced mobility enhancement increases and leads to a shift in the maximum point towards shorter channel lengths for devices without SEG. This shift is not observed for devices with SEG where the strain level is much lower. At 150 K the gm behavior of short channel strained devices with SEG is similar to the non SEC ones due to the better gm temperature enhancement for devices without SEG caused by the strain. For lower temperatures SEG structure is not useful anymore. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this work the performance of graded-channel (CC) SOI MOSFETs operating as source-follower buffers is presented. The experimental analysis is performed by comparing the gain and linearity of buffers implemented with CC and standard SOI MOS devices considering the same mask dimensions. It is shown that by using CC devices, buffer gain very close to the theoretical limit can be achieved, with improved linearity, while for standard devices the gain departs from the theoretical value depending on the inversion level imposed by the bias current and input voltage. Two-dimensional numerical simulations were performed in order to confirm some hypotheses proposed to explain the gain behavior observed in the experimental data. By using numerical simulations the channel length has been varied, showing that the gain of buffers implemented with CC devices remains close to the theoretical limit even when short-channel devices are adopted. It has also been shown that the length of a source-follower buffer using CC devices can be reduced by a factor of 5, in comparison with a standard Sol MOSFET, without gain loss or linearity degradation. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Protease production was carried out in solid state fermentation. The enzyme was purified through precipitation with ethanol at 72% followed by chromatographies in columns of Sephadex G75 and Sephacryl S100. It was purified 80-fold and exhibited recovery of total activity of 0.4%. SDS-PAGE analysis indicated an estimated molecular mass of 24.5 kDa and the N-terminal sequence of the first 22 residues was APYSGYQCSMQLCLTCALMNCA. Purified protease was only inhibited by EDTA (96.7%) and stimulated by Fe(2+) revealing to be a metalloprotease activated by iron. Optimum pH was 5.5, optimum temperature was 75 degrees C, and it was thermostable at 65 degrees C for 1 h maintaining more than 70% of original activity. Through enzyme kinetic studies, protease better hydrolyzed casein than azocasein. The screening of fluorescence resonance energy transfer (FRET) peptide series derived from Abz-KLXSSKQ-EDDnp revealed that the enzyme exhibited preference for Arg in P(1) (k(cat)/K(m) = 30.1 mM(-1) s(-1)).
Resumo:
The purified beta-glucosidase of Aureobasidium pullulans ER-16 is one of more thermostable enzyme reported to date. Considering the unfeasibility of using purified enzyme for industrial application, it was interesting to analyze this property for the crude enzyme. Thermophilic fungus Thermoascus aurantiacus CBMAI-756 and mesophilic A. pullulans ER-16 were cultivated in different hemicellulosic materials on solid-state cultivation for beta-glucosidase production. Wheat bran was most appropriate for beta-glucosidase production by both microorganisms. T. aurantiacus exhibited maximum enzyme production (7.0 U/ml or 70 U/g) at 48-72 h and A. pullulans a maximum (1.3 U/ml or 13 U/g) at 120 h. Maximum activities were at 75 degrees C with optimum pH at 4.5 and 4.0, for T aurantiacus and A. pullulans, respectively. A. pullulans`s beta-glucosidase was more pH stable (4.5-10.0 against 4.5-8.0) and more thermostable (90% after 1 h at 75 degrees C against 85% after 1 h at 70 degrees C) than the enzyme from the thermophilic T. aurantiacus. The t((1/2)) at 80 degrees C were 50 and 12.5 min for A. pullulans and T. aurantiascus, respectively. These data confirm the high thermostability of crude beta-glucosidase from A. pullulans. Both beta-glucosidases were strongly inhibited by glucose, but ethanol significantly increased the activity of the enzyme from T. aurantiacus. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In this review we demonstrate how the algebraic Bethe ansatz is used for the calculation of the-energy spectra and form factors (operator matrix elements in the basis of Hamiltonian eigenstates) in exactly solvable quantum systems. As examples we apply the theory to several models of current interest in the study of Bose-Einstein condensates, which have been successfully created using ultracold dilute atomic gases. The first model we introduce describes Josephson tunnelling between two coupled Bose-Einstein condensates. It can be used not only for the study of tunnelling between condensates of atomic gases, but for solid state Josephson junctions and coupled Cooper pair boxes. The theory is also applicable to models of atomic-molecular Bose-Einstein condensates, with two examples given and analysed. Additionally, these same two models are relevant to studies in quantum optics; Finally, we discuss the model of Bardeen, Cooper and Schrieffer in this framework, which is appropriate for systems of ultracold fermionic atomic gases, as well as being applicable for the description of superconducting correlations in metallic grains with nanoscale dimensions.; In applying all the above models to. physical situations, the need for an exact analysis of small-scale systems is established due to large quantum fluctuations which render mean-field approaches inaccurate.
Resumo:
The gamma-radiolysis of poly(tetrafluoroethylene-co-perfuoromethyl vinyl ether) (TFE/PMVE) was investigated using solid state F-19 and C-13 NMR spectroscopy. Chain scission products identified in the polymer were saturated chain ends -CF2CF3 (G = 1.0), methyl ether end groups -CF2OCF3 (G = 0.9), acid end groups -CF2COOH (G = 0.5), and a small amount of terminal unsaturation -CF=CF2 (G = 0.2). A mechanism for the formation of these scission products was proposed and the G value for main chain scission, G(S), was determined to be 1.4. Cross-linking of TFE/PMVE was found to proceed via a Y-linking mechanism. The G value for cross-linking, G(X), was determined to be 0.9. A maximum of 0.2 mol % cross-links were formed under the experimental conditions.
Resumo:
Fungal growth in time and space at the substrate surface was modelled for a simple system mimicking solid-state fermentation, using a polycarbonate Nucleopore membrane laid over a glucose solution. Biomass production depends on both tip density and the diffusion of glucose within the fungal hyphae. The model predicts early increases in both height and concentration, followed by a period in which the biomass profile moves with a constant wavefront. The rate of increase in height increases as tip diffusivity increases or as the Monod saturation constant for glucose decreases.
Resumo:
The complexes [Fe([9]aneN(2)S)(2)][ClO4](2), [Fe([9]aneN(2)S)(2)][ClO4](3) and [Fe([9]aneNS(2))(2)][ClO4](2) ([9]aneN(2)S = 1-thia-4. 7-diazacyclononane and [9]aneNS(2) = 1,4-dithia-7-azacyclononane) have been prepared and the latter two characterised by X-ray crystallography. The Mossbauer spectra (isomer shift/mm s(-1), quadrupole splitting/mm s(-1), 4.2 K) for [Fe([9]aneN(2)S)(2)][ClO4](2) (0.52, 0.57), [Fe([9]aneN(2)S)(2)][ClO4](3) (0.25, 2.72) and [Fe([9]aneNS(2))(2)][ClO4](2) (0.43, 0.28) are typical for iron(II) and iron(III) complexes. Variable-temperature susceptibility measurements for [Fe([9]aneN(2)S)(2)][ClO4](2) (2-300 K) revealed temperature-dependent behaviour in both the solid state [2.95 mu(B) (300 K)-0.5 mu(B) (4.2 K)] and solution (Delta H degrees 20-22 kJ mol(-1), Delta S degrees 53-60 J mol(-1) K-1). For [Fe([9]aneN(2)S)(2)][ClO4](3) in the solid state [2.3 mu(B) (300 K)-1.9 mu(B) (4.2 K)] the magnetic data were fit to a simple model (H = -lambda L . S + mu L-z) to give the spin-orbit coupling constant (lambda) of -260 +/- 10 cm(-1). The solid-state X-band EPR spectrum of [Fe([9]aneN(2)S)(2)][ClO4](3) revealed axial symmetry (g(perpendicular to) = 2.607, g(parallel to) = 1.599). Resolution of g(perpendicular to) into two components at Q-band frequencies indicated a rhombic distortion. The low-temperature single-crystal absorption spectra of [Fe([9]aneN(2)S)(2)][ClO4](2) and [Fe([9]aneNS(2))(2)][ClO4](2) exhibited additional bands which resembled pseudotetragonal low-symmetry splitting of the parent octahedral (1)A(1g) --> T-1(2g) and (1)A(1g) ---> T-1(1g) transitions. However, the magnitude of these splittings was too large, requiring 10Dq for the thioether donors to be significantly larger than for the amine donors. Instead, these bands were tentatively assigned to weak, low-energy S --> Fe-II charge-transfer transitions. Above 200 K, thermal occupation of the high-spin T-5(2g) ground state resulted in observation of the T-5(2g) --> E-5(g) transition in the crystal spectrum of [Fe([9]aneN(2)S)(2)][ClO4](2). From a temperature-dependence study, the separation of the low-spin (1)A(1g) and high-spin T-5(2g) ground states was approximately 1700 cm(-1). The spectrum of the iron(III) complex [Fe([9]aneN(2)S)(2)][ClO4](3) is consistent with a low-spin d(5) configuration.
Resumo:
The macrocyclic compounds (6-(4',6'-diamino-1',3',5'-triazinyl)-1,4,6,8,11-pentaazacyclotetradecane)copper(II) triperchlorate dihydrate, [Cu(HL2)](ClO4)(3). 2H(2)O, (6-(6'-amino-4'-oxo-1'H-1',3',5'-triazinyl)-1,4,6,8,11-pentaazacyclotetradecane)copper(II) diperchlorate hydrate, [CuL3](ClO4)(2). H2O, and [(6-(4',6'-dioxo-1'H-1',3',5'-triazinyl) 1,4,6,8,11-pentaazacyclotetradecane)copper(II)] diperchlorate, [CuL4](ClO4)(2), have been synthesized. The macrocycles synthesized contain respectively pendant melamine, ammeline,and ammelide rings. The X-ray cyrstallographic analyses of [Cu(HL2)](ClO4)(3). 2H(2)O, triclinic, space group P (1) over bar, a = 9.489(10) Angstrom, b = 12.340(2) Angstrom, c = 24.496(4) Angstrom, alpha = 87.74(10)degrees beta = 85.51(10)degrees gamma = 70.95(10)degrees and Z = 4, and {[CuL3](ClO4)(2). H2O}2, monoclinic, space group C2/c, a = 18.624(8) Angstrom, b = 17.160(2) Angstrom, c = 15.998(6) Angstrom, beta = 117.82(2)degrees, and Z = 4, are reported. The structure of [Cu(HL2)](ClO4)(3). 2H(2)O shows the formation of linear tapes, formed by a combination of hydrogen bonds and pi-pi stacking interactions. The structure of [CuL3](ClO4)(2). H2O displays formation of dimers, formed by a coordinate bond from the oxygen in one molecule to the copper atom of another. The tautomeric forms of the ammeline and ammelide moieties have been determined. The potential of these compounds as subunits for cocrystallization has been investigated.
Resumo:
A new cyclic octapeptide, cyclo(Ile-Ser-(Gly)Thz-Ile-Thr-(Gly)Thz) (PatN), related to patellamide A, has been synthesized and reacted with copper(II) and base to form mono- and dinuclear complexes. The coordination environments around copper(TI) have been characterized by EPR spectroscopy. The solution structure of the thermodynamically most stable product, a purple dicopper(TI) compound, has been examined by simulating weakly dipole-dipole coupled EPR spectra based upon structural parameters obtained from force field (MM and MD) calculations. The MM-EPR method produces a saddle-shaped structure for [Cu-2(PatN)(OH2)(6)] that is similar to the known solution structure of patellamide A and the known solid-state structure of [Cu-2(AscidH(2))CO3(OH2)(2)]. Compared with the latter, [Cu-2(PatN)] has no carbonate bridge and a significantly flatter topology. The MM-EPR approach to solution-structure determination for paramagnetic metallopeptides may find wide applications to other metallopeptides and metalloproteins.
Resumo:
The effect of trace additions of magnesium on the sintering of aluminum and its alloys is examined. Magnesium, especially at low concentrations, has a disproportionate effect on sintering because it disrupts the passivating Al2O3 layer through the formation of a spinel phase. Magnesium penetrates the sintering compact by solid-state diffusion, and the oxide is reduced at the metal-oxide interface. This facilitates solid-state sintering, as well as wetting of the underlying metal by sintering liquids, when these are present. The optimum magnesium concentration is approximately 0.1 to 1.0 wt pet, but this is dependent on the volume of oxide and, hence, the particle size, as well as the sintering conditions. Small particle-size fractions require proportionally more magnesium than large-size fractions do.
Resumo:
Using tryptophan C-13-enriched at the C-4 (C epsilon(3)) of the indole, the orientation of the C epsilon(3) chemical shift tensor relative to the C epsilon(3)-H dipolar axis was determined from the C-13 chemical shift/C-13-H-1 dipolar 2D NMR powder pattern. The principal values obtained were 208, 137 and 15 ppm with sigma(33) perpendicular to the indole plane, and sigma(11) (least shielded direction) 5 degrees off the C epsilon(3)-H bond toward C xi(3). The side off the C epsilon(3)-H bond was determined by comparing the reduced chemical shift anisotropies obtained by solid-state NMR and from molecular dynamics calculations of [4-C-13] tryptophans in gramicidin A aligned in phospholipid membranes. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The properties of the hydrogen-bonded polymer blends of poly(4-vinylphenol) and poly(2-ethoxyethyl methacrylate) are presented. Spectroscopic techniques such as C-13 solid-state NMR and FT-IR are used to probe specific interactions of the blends at various compositions. Spectral features from both techniques revealed that site-specific interactions are present, consistent with a significant degree of mixing of the blend components. Changes in chemical shift and line shape of the phenolic carbon and carbonyl resonances in the C-13 CPMAS spectra of the blends as a function of composition are interpreted as resulting from changes in the relative intensities of two closely overlapped signals. A quantitative measure of hydrogen-bonded carbonyl groups using C-13 NMR has been obtained which agreed well with the results from FT-IR analyses. It is also shown that C-13 NMR can be used to measure the fraction of hydroxyl groups associated with carbonyl groups, which was not possible previously using FT-IR due to extensive overlapping of bands in the hydroxyl stretching region. The results of measurements of H-1 T-1 and 1H T-1 rho indicate that PVPh and PEEMA are intimately mixed on a scale less than 2-3 nm.
Resumo:
A comparison is made between the structures and calcium binding properties of four cyclic octapeptides that differ in the number of heterocyclic thiazole and oxazoline ring constraints. The conformations of the naturally occurring cyclic octapeptides ascidiacyclamide 1 and patellamide D 2, which each contain two oxazoline and two thiazole rings, are compared by H-1 NMR spectroscopy with the analogues cyclo(Thr-D-Val(Thz)-Ile)(2) 3 with just two thiazoles, and cyclo(Thr-D-Val-alpha Abu-Ile)(2) 4, with no 5-membered rings. The conformations observed in the solid state for ascidiacyclamide (saddle) and patellamide D (twisted figure of eight) were retained in solution, whilst peptide 3 was found to have a chair shape and peptide 4 displayed a range of conformations. The solid state structure of 4 revealed that the peptide takes a relatively planar conformation with a number of transannular hydrogen bonds, which are apparently retained in solution. Complexation studies utilising H-1 NMR and CD spectroscopy yielded 1∶1 calcium-peptide binding constants (log K) for the four peptides (2.9 (1), 2.8 (2), 4.0 (3) and 5.5 (4)) as well as a 1 : 2 metal-peptide binding constant for 3 (log K = 4.5). The affinity for Ca2+ thus decreases with increasing number of 5-membered ring constraints in the macrocycle (4 > 3 > 2 approximate to 1).