853 resultados para SOLID AMALGAMS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The corrosion resistance of three of the constituent phases in high copper dental amalgams has been investigated by electrochemical methods in 0.9% NaCl solution. Polarization curves show corrosion potentials most positive for gamma(1)-Ag2Hg3, followed by Ag-Cu, and gamma-Ag3Sn in agreement with the order of corrosion resistance deduced from the corrosion currents. Complex plane impedance plots at the open circuit potential showed distorted semicircles with diffusional components at low frequency for Ag-Hg and Ag-Cu, while for gamma-Ag3Sn a layer of corrosion products is formed, partially or completely covering the surface of the electrode. Impedance and noise spectra have been compared in the frequency domain, and show good agreement. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Dental amalgams, formed by reaction of mercury with a powder alloy containing mainly Ag, Sn, Cu and Zn, have a complex metallurgical structure which can contain up to six phases. Their observed corrosion is thus a complex process, which involves contributions from each of the phases present as well as intergranular corrosion. It is thus of interest to investigate the corrosion of individual phases present in dental amalgams. In this work the corrosion behaviour in 0.9% NaCl solution of Ag-Hg, Ag-Sn and Sn-Hg phase components of dental amalgams was investigated by electrochemical methods. The corrosion resistance was found to decrease in the order gamma (1)-Ag2\Hg3, gamma -Ag3Sn and gamma (2)-Sn7Hg. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Metallographic studies by scanning electron microscopy and energy dispersive spectroscopy carried out for two types of dental amalgam showing a porous multiphase material. Surface analysis shows that the structure of the Dispersalloy amalgam consists of gamma-Ag3Sn, gamma(1)-Ag2Hg3, eta'-Cu6Sn5, epsilon-Cu3Sn and eutectic Ag-Cu phases. while Velvalloy amalgam consists mainly of gamma, gamma(1) and gamma(2)-Sn7-8Hg phases. The latter phase presents an uniform distribution often associated with voids.
Resumo:
The effect of calcination temperature during the formation of the solid solution Sn(0.9)Ti(0.1)O(2) doped with 1.00 mol % CoO and 0.05 mol % Nb(2)O(5) is presented. The structural characteristics of this system were studied using X-ray diffraction, and the changes in phase formation were analyzed using the Rietveld method. With an increase in calcination temperature, there is increasing miscibility of Ti into the (Ti,Sn)O(2) phase and near 1000 degrees C, and the remaining TiO(2) (anatase) was transformed into the rutile phase. The sintering process, monitored using dilatometry, suggests two mass transport mechanisms, one activated close to 900 degrees C associated with the presence of TiO(2) (anatase) and the second mechanism, occurring between 1200 and 1300 degrees C, is attributed to a faster grain boundary diffusion caused by oxygen vacancies. (C) 2008 International Centre for Diffraction Data.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)