926 resultados para SOL-GEL METHOD


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon-supported platinum is commonly used as an anode electrocatalyst in low-temperature fuel cells fueled with methanol. The cost of Pt and the limited world supply are significant barriers for the widespread use of this type of fuel cell. Moreover, Pt used as anode material is readily poisoned by carbon monoxide produced as a byproduct of the alcohol oxidation. Although improvements in the catalytic performance for methanol oxidation were attained using Pt-Ru alloys, the state-of-the-art Pt-Ru catalyst needs further improvement because of relatively low catalytic activity and the high cost of noble Pt and Ru. For these reasons, the development of highly efficient ternary platinum-based catalysts is an important challenge. Thus, various compositions of ternary Pt(x)-(RuO(2)-M)(1-x)/C composites (M = CeO(2), MoO(3), or PbO(x)) were developed and further investigated as catalysts for the methanol electro-oxidation reaction. The characterization carried out by X-ray diffraction, energy-dispersive X-ray analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry point out that the different metallic oxides were successfully deposited on the Pt/C, producing small and well-controlled nanoparticles in the range of 2.8-4.2 nm. Electrochemical experiments demonstrated that the Pt(0.50)(RuO(2)-CeO(2))(0.50)/C composite displays the higher catalytic activity toward the methanol oxidation reaction (lowest onset potential of 207 mV and current densities taken at 450 mV, which are 140 times higher than those at commercial Pt/C), followed by the Pt(0.75)(RuO(2)-MoO(3))(0.25)/C composite. In addition, both of these composites produced low quantities of formic acid and formaldehyde when compared to a commercially available Pt(0.75)-Ru(0.25)/C composite (from E-Tek, Inc.), suggesting that the oxidation of methanol occurs mainly by a pathway that produces CO(2) forming the intermediary CO(ads).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flexible, transparent, and insoluble urea-cross-linked polyether-siloxane hybrids presenting a tunable drug delivery pattern were prepared using the sol-gel method from PEO (poly(ethylene oxide)) and PPO (poly(propylene oxide)) functionalized at both chain ends with triethoxysilane. Different polyether chain lengths were used to control the urea/siloxane (named ureasil) node density, flexibility, and swellability of the hybrid network. We herein demonstrate that the drug release from swellable hydrophilic ureasil-PEO hybrids can be sustained for some days, whereas that from the unswellable ureasil-PPO hybrids can be sustained for some weeks. This outstanding feature conjugated with the biomedically safe formulation of the ureasil cross-linked polyether-siloxane hybrid widens their scope of application to include the domain of soft and implantable drug delivery devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The well-known polymeric precursor route is a simple and low-cost sol-gel method based on the preparation of an aqueous precursor solution of metals followed by the addition of a water-soluble polymer. This method consists of a polyesterification process between a metal chelate complex by using a hydroxycarboxylic acid and a polyhydroxy alcohol. In this work, citric acid (CA), tartaric acid (TA) and ethylenediaminetetraacetic acid (EDTA) are used as the hydroxycarboxylic acid and ethylene glycol (EG) is used as the polyhydroxy alcohol. The effects of the precursor pH solution, time and temperature of polymerization step as well as the combination of different chelating agents in order to obtain nanoscopic YBa2Cu3Oy samples were traced. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid systems formed from polymers and transition metals have now their physical and chemical properties extensively investigated for use in electronic devices. In this work, Titanium Dioxide (TiO2) from the precursor of titanium tetrabutoxide and the composite system Poly(Ethylene Glycol)-Titanium Dioxide (TiO2-PEG) were synthesized by sol-gel method. The PEG as acquired and TiO2 and composites powders were analyzed by X-Ray Diffraction (XRD), Spectroscopy in the Infrared region with Fourier transform (IRFT), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and Electrochemical Impedance Spectroscopy (EIS). In the XRD analysis were observed in the TiO2 crystal faces of one of its polymorphs - anatase phase, crystal planes in Poly (Ethylene Glycol) with considerable intensity and in the composite systems the mixture of crystal faces of their precursors isolated and reduction of crystallinity. The TG / DTG suggested increasing the thermal instability of PEG in the composite powders as TiO2 is incorporated into the system. Spectral analysis presented in the infrared overlapping bands for the polymer and metal oxide, reducing the intensity of symmetric stretching of ligand groups in the main chain polymer and angular deformations; were observed using SEM micrographs of the morphological changes suffered by composite systems with the variation of the oxide concentration. Analyses by impedance spectroscopy indicated that the increased conductivity in composite occurs in line with the addition of the metal oxide concentration in the composite system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples of lanthanum Ortoferrites doped with strontium were synthesized in a single phase by the sol-gel method. Two samples were prepared, one by varying the concentration of strontium in lanthanum ortoferrites La1−xSrxFeO3−δ with (0 ≤ x ≤ 0.5), and another batch of samples of type, La1/3Sr2/3FeO3−δ, now varying only the temperature of calcination. Our samples were obtained by Pechini method and sintered in air and oxygen atmospheric. Their crystal structures were determined by x-ray diraction (XRD), scanning electron microscopy (SEM), where we observed that the samples (0 ≤ x ≤ 0.3) have orthorhombic symmetry and the volume of the single cell decreases with the increasing of concentration of strontium. For x = 0.5 it is only observed the simple phase when that is sintered in O2 atmospheric. Their magnetic characteristics were obtained by the Mössbauer spectroscopy and magnetic measurements. The magnetization measurements for samples La1−xSrxFeO3−δ with (0 ≤ x ≤ 0.5) revealed that the magnetization decreases with increasing concentration of strontium, but for the sample x = 0.4 the magnetization shows a high coercive field and a ferrimagnetic behavior, which is attributed to a small amount of strontium hexaferrite. As for the samples La1/3Sr2/3FeO3−δ calcined between 800 oC e 1200 oC. The hysteresis curves revealed two distinct behaviors: an declined antiferromagnetic behavior (Canted) for samples calcined between 800 oC and 1000 oC and a paramagnetic behavior for the samples calcined at 1100 oC e 1200 o C. Thermal hysteresis and sharp peaks around the Néel temperature (TN), over the curves of specific heat as a function of temperature was only observed in calcined samples with 1100 oC and 1200 oC. This eect is attributed to the charge ordering. These results indicate that the charge ordering occurs only in the samples without oxygen deficiency. Magnetic measurements as a function of temperature are also in agreement with this interpretation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the synthesis and characterization of 2-aminothiazole modified silica gel (SiAT) and the studies of adsorption and pre-concentration (in batch and using a flow-injection system coupled with optical emission spectrometer) of Cd(II), Cu(II) and Ni(II) in aqueous medium. The adsorption capacity for each metal ions in mmolg(-1) was: Cu(II) = 1.18, Ni(II) = 1.15 and Cd(II) = 1.10. The results obtained in the flow experiments showed about 100% of recovering of the metal ions adsorbed in a mini-column packed with 100 mg of SiAT, using 100 mu L of 2.0 mol L-1 HCl solution as eluent. The quantitative sorption-desorption of the metal ions made possible the application of a flow-injection system in the pre-concentration and quantification by ICP-OES of metal ions at trace level in natural water samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical conductivity and H-1 Nuclear Magnetic Resonance (NMR) techniques were used to investigate the ion-exchanged layered lead-niobate perovskite HPb2Nb3O10. nH(2)O, over the temperature range 90-350 K. Compounds were synthesized by the sol-gel method and calcinated at 650 degreesC. Analysis of the NMR data gives activation energies for the proton motion in the range 0.14-0.40 eV, which are dependent on the water content. The frequency and temperature dependencies of the proton spin-lattice relaxation times show that the character of the motion of the: water molecules is essentially two-dimensional, reflecting the layered structure of the material. The H-1 line-narrowing transition and the single spin-lattice relaxation rate maximum, observed in the hydrated compounds, are consistent with a Grotthuss-like mechanism for the proton diffusion. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of V2O5/TiO2 samples was synthesized by sol-gel and impregnation methods with different contents of vanadia. These samples were characterized by x-ray diffraction (XRD), Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and electronic paramagnetic resonance (EPR). XRD detected rutile as the predominant phase for pure TiO2 prepared by the sol-gel method. The structure changed to anatase when the vanadia loading was increased. Also, anatase was the predominant phase for samples obtained by the impregnation method. Raman measurements identified two species of surface vanadium: monomeric vanadyl (V4+) and polymeric vanadates (V5+). XPS results indicated that Ti ions were in octahedral position surrounded by oxygen ions. The V/Ti atomic ratios showed that V ions were highly dispersed on the vanadia/titania surface obtained by the sol-gel method. EPR analysis detected three V4+ ion types: two of them were located in axially symmetric sites substituting for Ti4+ ions in the rutile structure, and the third one was characterized by magnetically interacting V4+ ions in the form of pairs or clusters. A partial oxidation of V4+ to V5+ was evident from EPR analysis for materials with higher concentrations of vanadium. (C) 2001 American Vacuum Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectroscopy and Electron Paramagnetic Resonance (EPR) studies were performed on a series of V(2)O(5)/TiO(2) catalysts prepared by a modified sol-gel method in order to identify the vanadium species. Two species of surface vanadium were identified by Raman measurements, monomeric vanadyls and polymeric vanadates. Monomeric vanadyls are characterized by a narrow Raman band at 1030 cm(-1) and polymeric vanadates by two broad bands in the region from 900 to 960 cm(-1) and 770 to 850 cm(-1). The Raman spectra do not exhibit characteristic peaks of crystalline V(2)O(5). These results are in agreement with those of X-ray Diffractometry (XRD) and Fourier Transform Infrared (FT-IR) previously reported (C.B. Rodella et al., J. Sol-Gel Sci. Techn., submitted). At least three families of V(4+) ions were identified by EPR investigations. The analysis of the EPR spectra suggests that isolated V(4+) ions are located in sites with octahedral symmetry substituting for Ti(4+) ions in the rutile structure. Magnetically interacting V(4+) ions are also present as pairs or clusters giving rise to a broad and structureless EPR line. At higher concentration of V(2)O(5), a partial oxidation of V(4+) to V(5+) is apparent from the EPR results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples of the V(2)O(5)/TiO(2) system were prepared by the sol-gel method and calcined at different temperatures. Surface species of vanadium, their dispersion, as well as the structural evolution of the system were analysed by XRD, Raman, EPR, and XPS techniques. The results of XRD showed the evolution of TiO(2) from anatase phase to rutile. phase. The Raman spectra for calcination temperatures up to 500 degreesC showed a good dispersion of vanadium over titania in the form of monomeric vanadyl groups (V(4+)) and polymeric vanadates (V(5+)). At least three families of V4+ ions were identified by EPR investigations. Two kinds of isolated V(4+) species are placed in sites of octahedral symmetry, substituting Ti(4+) in the rutile phase. The third is formed by pairs of V(4+) species on the surface of titania. Above 500 degreesC part of superficial V(4+) is inserted into the,matrix of titania and part is oxidized to V(5+). The XPS results showed that the V/Ti ratio rises with increasing calcination temperature, indicating a smaller dispersion of vanadium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of silver insertion on the TiO(2) photocatalytic activity for the degradation of diclofenac potassium were reported here. Techniques such as X-ray diffraction, scanning electron microscopy and UV-Vis spectroscopy were used to comprehend the relation between structure and properties of the silver-modified TiO(2), thin films obtained by the sol-gel method. The lattice parameters and the crystallinity of TiO(2) anatase phase were affected by inserted silver, and the film thickness increased about 4 nm for each 1 wt.% of silver inserted. The degradation of diclofenac potassium and by-products reached an efficiency of 4.6 mg(C) W(-1) when the material was modified with silver. Although the first step of degradation involves only the photochemical process related to the loss of the chlorine and hydrogen atoms. This cyclization reaction leads to the formation of intermediate, which degradation is facilitated by the modified material. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glass ionomer cements (GICs) are products of the acid-base setting reaction between an finely fluoro-alumino silicate glass powder and poly(acrylic acid) in aqueous solution. The sol gel method is an adequate route of preparation of the glasses used to obtain the GICs. The objective of this paper was to compare two powders: a commercial and an experimental and to investigate the structural changes during hardening of the cements by FTIR and Al MAS NMR. These analyses showed that the experimental glass powder reacted with organic acid to form the GICs and it is a promising material to manufacture dental cements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)