1000 resultados para Rhododendron x simsii Planch
Resumo:
In this thesis the X-ray tomography is discussed from the Bayesian statistical viewpoint. The unknown parameters are assumed random variables and as opposite to traditional methods the solution is obtained as a large sample of the distribution of all possible solutions. As an introduction to tomography an inversion formula for Radon transform is presented on a plane. The vastly used filtered backprojection algorithm is derived. The traditional regularization methods are presented sufficiently to ground the Bayesian approach. The measurements are foton counts at the detector pixels. Thus the assumption of a Poisson distributed measurement error is justified. Often the error is assumed Gaussian, altough the electronic noise caused by the measurement device can change the error structure. The assumption of Gaussian measurement error is discussed. In the thesis the use of different prior distributions in X-ray tomography is discussed. Especially in severely ill-posed problems the use of a suitable prior is the main part of the whole solution process. In the empirical part the presented prior distributions are tested using simulated measurements. The effect of different prior distributions produce are shown in the empirical part of the thesis. The use of prior is shown obligatory in case of severely ill-posed problem.
Resumo:
Independent of the sample form (powder or film), XRD analysis of Ir0,3Ti(0,7-x)Ce xO2, (nominal) mixtures, for x=0, shows the formation of a solid solution phase between IrO2 and TiO2, as well as the rutile phases of IrO2 and TiO2. The presence of the anatase phase of TiO2 is also confirmed. The introduction of 30 mol% CeO2 in the mixture reveals the presence of the CeO2 and Ce2O3 phases, besides the already mentioned ones, in the powder. In the film form, however, an amorphous phase is identified. When all of the TiO2 is substituded by CeO2, for both sample forms, the only phases found are IrO2, CeO2 and Ce2O3. This result suggests cerium oxides are not capable of forming solid solutions with either IrO2 or (Ir,Ti)O2 acting solely as a dispersant matrix for these phases. These results are consistent with the much higher electrochemically active surface area when CeO2 is introduced in the binary Ti/Ir0,3Ti0,7O2 mixture. It was possible to establish a relationship between the electrochemical stability of the supported films and their crystalline structure. The unexpected presence of TiO2 and Ti2O3 in the Ti/Ir0,3Ce0,7O2 (film sample) is attributed to oxidation of the Ti support during the calcination step.
Resumo:
A physical model for the simulation of x-ray emission spectra from samples irradiated with kilovolt electron beams is proposed. Inner shell ionization by electron impact is described by means of total cross sections evaluated from an optical-data model. A double differential cross section is proposed for bremsstrahlung emission, which reproduces the radiative stopping powers derived from the partial wave calculations of Kissel, Quarles and Pratt [At. Data Nucl. Data Tables 28, 381 (1983)]. These ionization and radiative cross sections have been introduced into a general-purpose Monte Carlo code, which performs simulation of coupled electron and photon transport for arbitrary materials. To improve the efficiency of the simulation, interaction forcing, a variance reduction technique, has been applied for both ionizing collisions and radiative events. The reliability of simulated x-ray spectra is analyzed by comparing simulation results with electron probe measurements.
Resumo:
We present a general algorithm for the simulation of x-ray spectra emitted from targets of arbitrary composition bombarded with kilovolt electron beams. Electron and photon transport is simulated by means of the general-purpose Monte Carlo code PENELOPE, using the standard, detailed simulation scheme. Bremsstrahlung emission is described by using a recently proposed algorithm, in which the energy of emitted photons is sampled from numerical cross-section tables, while the angular distribution of the photons is represented by an analytical expression with parameters determined by fitting benchmark shape functions obtained from partial-wave calculations. Ionization of K and L shells by electron impact is accounted for by means of ionization cross sections calculated from the distorted-wave Born approximation. The relaxation of the excited atoms following the ionization of an inner shell, which proceeds through emission of characteristic x rays and Auger electrons, is simulated until all vacancies have migrated to M and outer shells. For comparison, measurements of x-ray emission spectra generated by 20 keV electrons impinging normally on multiple bulk targets of pure elements, which span the periodic system, have been performed using an electron microprobe. Simulation results are shown to be in close agreement with these measurements.
Resumo:
Crude extract of Tibouchina granulosa, Rhododendron simsii and Phaseolus vulgaris L. were prepared and used as alternative indicators in quantitative analysis teaching in standardization of NaOH solutions and in the determination of acetic acid contents in vinegar. Effect of using such natural extracts as indicators was very attractive to the students and the quantitative results were compared with conventional indicators with good agreement. Concepts of data statistics can successfully be discussed using the interest revived by the use of natural indicators.
Resumo:
One of the main problems in quantitative analysis of complex samples by x-ray fluorescence is related to interelemental (or matrix) effects. These effects appear as a result of interactions among sample elements, affecting the x-ray emission intensity in a non-linear manner. Basically, two main effects occur; intensity absorption and enhancement. The combination of these effects can lead to serious problems. Many studies have been carried out proposing mathematical methods to correct for these effects. Basic concepts and the main correction methods are discussed here.
Resumo:
Chloride poisoning is known as having an inhibitor effect in the activity of metal catalysis. In this work in situ infrared spectroscopy (FTIR) of adsorbed carbon monoxide and x-ray photoelectron spectroscopy (XPS) were used to investigate the effect of chloride presence in the electronic metal density in the d subshell of palladium dispersed on alumina. The chloride poisoning effect was interpreted as an electronic effect since a weak back-bonded Pd-CO was formed due to the decrease in the electronic density of the d subshell of palladium, which could be also detected by the higher Pd 3d5/2 binding energy in the chloride presence. A similar poisoning effect was also observed for chloride free Pd/Al2O3 reduced at 500 ºC, and it was interpreted based on the interaction of metal with the alumina surface. The use of molybdena/alumina binary system as support, yield a contrary effect due to the metal-support interaction.
Resumo:
The objective of this work was to accomplish the simultaneous determination of some chemical elements by Energy Dispersive X-ray Fluorescence (EDXRF) Spectroscopy through multivariate calibration in several sample types. The multivariate calibration models were: Back Propagation neural network, Levemberg-Marquardt neural network and Radial Basis Function neural network, fuzzy modeling and Partial Least Squares Regression. The samples were soil standards, plant standards, and mixtures of lead and sulfur salts diluted in silica. The smallest Root Mean Square errors (RMS) were obtained with Back Propagation neural networks, which solved main EDXRF problems in a better way.
Resumo:
The purpose of gamma spectrometry and gamma and X-ray tomography of nuclear fuel is to determine both radionuclide concentration and integrity and deformation of nuclear fuel. The aims of this thesis have been to find out the basics of gamma spectrometry and tomography of nuclear fuel, to find out the operational mechanisms of gamma spectrometry and tomography equipment of nuclear fuel, and to identify problems that relate to these measurement techniques. In gamma spectrometry of nuclear fuel the gamma-ray flux emitted from unstable isotopes is measured using high-resolution gamma-ray spectroscopy. The production of unstable isotopes correlates with various physical fuel parameters. In gamma emission tomography the gamma-ray spectrum of irradiated nuclear fuel is recorded for several projections. In X-ray transmission tomography of nuclear fuel a radiation source emits a beam and the intensity, attenuated by the nuclear fuel, is registered by the detectors placed opposite. When gamma emission or X-ray transmission measurements are combined with tomographic image reconstruction methods, it is possible to create sectional images of the interior of nuclear fuel. MODHERATO is a computer code that simulates the operation of radioscopic or tomographic devices and it is used to predict and optimise the performance of imaging systems. Related to the X-ray tomography, MODHERATO simulations have been performed by the author. Gamma spectrometry and gamma and X-ray tomography are promising non-destructive examination methods for understanding fuel behaviour under normal, transient and accident conditions.
Determinação de arsênio em águas contaminadas usando fluorescência de raios-X por energia dispersiva
Resumo:
This work proposes a simple, fast and inexpensive method to determine As in natural waters, using X-ray fluorescence. 50 µL of each sample containing 100 mg L-1 of yttrium as internal standard were deposited over a 2.5 µm thickness MylarTM film. The samples were dried at 50 °C for 2 h. X-ray spectra were obtained using an EDXRF apparatus. The accuracy was determined by analyte addition/recovery and by comparison with Hydride Generation Atomic Absorption Spectrometry (HG AAS). A recovery of about 100% was obtained and the results were in good agreement with HG AAS. The method showed a relative standard deviation of 6.8% and a detection limit of 10.5 µg L-1 of As.
Resumo:
Combinatorial chemistry refers to techniques to rapidly fabricate tens, hundreds or even thousands of different micro samples. The analysis of the large number of samples generated by combinatorial methods requires highly efficient analytical methods. In this case, the challenges are due not only to the large number of samples to be analyzed, but also to the small amount of sample available for analysis. This paper describes the fundamentals of combinatorial chemical methods applied to discover of materials and the development in x-ray diffraction to analyze micro samples.
Resumo:
RX J1826.2-1450/LS 5039 has been recently proposed to be a radio emitting high mass X-ray binary. In this paper, we present an analysis of its X-ray timing and spectroscopic properties using different instruments on board the RXTE satellite. The timing analysis indicates the absence of pulsed or periodic emission on time scales of 0.02-2000 s and 2-200 d, respectively. The source spectrum is well represented by a power-law model, plus a Gaussian component describing a strong iron line at 6.6 keV. Significant emission is seen up to 30 keV, and no exponential cut-off at high energy is required. We also study the radio properties of the system according to the GBI-NASA Monitoring Program. RX J1826.2-1450/LS 5039 continues to display moderate radio variability with a clearly non-thermal spectral index. No strong radio outbursts have been detected after several months.
Resumo:
Les binaries o estrelles dobles fisiques son sistemes formats per dues estrelles lligades gravitatoriament. Avui en dia sabem que aquest és un fenomen molt comú a la galaxia, on aproximadament la meitat de les estrelles s'han format i han donat lloc a aquesta mena de sistemes...
Resumo:
The potentialities of X-ray Absorption Near Edge Spectroscopy (XANES) of the N K edge (N K) obtained with the spherical grating monochromator beam line at the Brazilian National Synchrotron Light Laboratory are explored in the investigation of poly(aniline), nanocomposites and dyes. Through the analysis of N K XANES spectra of conducting polymers and many other dye compounds that are dominated by 1s®p* transitions, it was possible to correlate the band energy value with the nitrogen oxidation states. An extensive N K XANES spectral database was obtained, thus permitting the elucidation of the nature of different nitrogens present in the intercalated conducting polymers.
Resumo:
LaNiO3 perovskite was modified by partial substitution of nickel by cobalt in order to increase the stability and resistance to carbon deposition during the methane CO2 reforming. The results showed that a suitable combination of precipitation and calcination steps resulted in oxides with the desired structure and with important properties for application in heterogeneous catalysis. The partial substitution of Ni by Co resulted in lower rates of conversion of both the reactants, but the catalyst stability was highly increased. The LaNi0.3Co0.7O3 catalyst, calcined at 800 ºC, was the most active under the reaction conditions.