984 resultados para Rehydration Solutions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water solutions of representative (IC(4)mim][Cl] and [C(4)mim][Tf2N] room temperature ionic liquids (ILs) in contact with a neutral lipid bilayer made of cholesterol molecules has been investigated by molecular dynamics simulations based on an empirical force field model. The results show that both ILs display selective adsorption at the water-cholesterol interface, with partial inclusion of ions into the bilayer. In the case Of [C(4)mim][Cl], the adsorption of ions at the water-cholesterol interface is limited by a sizable bulk solubility of the IL, driven by the high water affinity of [Cl](-). The relatively low Solubility Of [C(4)mim][Tf2N], instead, gives rise to a nearly complete segregation of the IL component on the bilayer, altering its volume, compressibility, and electrostatic environment. The computational results display important similarities to the results of recent experimental measurements for ILs in contact with phospholipid model membranes (see Evans, K. O. Int. J. Mol. Sci. 2008, 9, 498-511 and references therein).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The volumetric properties of seven {water + ionic liquid} binary mixtures have been studied as a function of temperature from (293 to 343) K. The phase behaviour of the systems was first investigated using a nephelometric method and excess molar volumes were calculated from densities measured using an Anton Paar densimeter and fitted using a Redlich-Kister type equation. Two ionic liquids fully miscible with water (1-butyl-3-methylimidazolium tetrafluoroborate ([CCIm][BF]) and 1-ethyl-3-methylimidazolium ethylsulfate ([CCIm][EtSO])) and five ionic liquids only partially miscible with water (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([CCIm][NTf]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([CCIm][NTf]), 1-butyl-3-methylimidazolium hexafluorophosphate ([CCIm][PF]), 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([CCPyrro][NTf]), and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide ([N][NTf])) were chosen. Small excess volumes (less than 0.5 cm · mol at 298 K) are obtained compared with the molar volumes of the pure components (less than 0.3% of the molar volume of the pure ionic liquid). For all the considered systems, except for {[CCIm][EtSO] + water}, positive excess molar volumes were calculated. Finally, an increase of the non-ideality character is observed for all the systems as temperature increases. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ettringite and thaumasite can be found among the deterioration products of cementitious materials exposed to sulfate and hydrochloric attack. The results of a test program to investigate the acid resistance of self-compacting concrete (SCC) and conventional concrete (CC), immersed up to 18 weeks at 20°C in sulfuric and hydrochloric acid solutions, are described. The SCC was prepared with 47% carboniferous limestone powder, as a replacement for cement, and an ordinary portland cement. The CC was prepared with portland cement only. The water-binder ratios of the SCC and CC were 0.36 and 0.46, respectively. The parameter investigated was the time, in weeks, taken to cause 10% mass loss of fully immersed concrete specimens in a 1% solution of sulfuric acid and the same amount of loss in a 1% solution of hydrochloric acid. The investigation indicated that the SCC performed better than the CC in sulfuric solution but was slightly more vulnerable to hydrochloric acid attack compared to CC. The mode of attack between the two solutions was different.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solvent extraction of cesium ions from aqueous solution to hydrophobic ionic liquids without the introduction of an organophilic anion in the aqueous phase was demonstrated using calix[4]arene-bis(tert-octylbenzo-crown-6) (BOBCalixC6) as an extractant. The selectivity of this extraction process toward cesium ions and the use of a sacrificial cation exchanger (NaBPh4) to control loss of imidazolium cation to the aqueous solutions by ion exchange have been investigated.