960 resultados para Recollecters of solid residues
Resumo:
From the early stages of the twentieth century, polyaniline (PANI), a well-known and extensively studied conducting polymer has captured the attention of scientific community owing to its interesting electrical and optical properties. Starting from its structural properties, to the currently pursued optical, electrical and electrochemical properties, extensive investigations on pure PANI and its composites are still much relevant to explore its potentialities to the maximum extent. The synthesis of highly crystalline PANI films with ordered structure and high electrical conductivity has not been pursued in depth yet. Recently, nanostructured PANI and the nanocomposites of PANI have attracted a great deal of research attention owing to the possibilities of applications in optical switching devices, optoelectronics and energy storage devices. The work presented in the thesis is centered around the realization of highly conducting and structurally ordered PANI and its composites for applications mainly in the areas of nonlinear optics and electrochemical energy storage. Out of the vast variety of application fields of PANI, these two areas are specifically selected for the present studies, because of the following observations. The non-linear optical properties and the energy storing properties of PANI depend quite sensitively on the extent of conjugation of the polymer structure, the type and concentration of the dopants added and the type and size of the nano particles selected for making the nanocomposites. The first phase of the work is devoted to the synthesis of highly ordered and conducting films of PANI doped with various dopants and the structural, morphological and electrical characterization followed by the synthesis of metal nanoparticles incorporated PANI samples and the detailed optical characterization in the linear and nonlinear regimes. The second phase of the work comprises the investigations on the prospects of PANI in realizing polymer based rechargeable lithium ion cells with the inherent structural flexibility of polymer systems and environmental safety and stability. Secondary battery systems have become an inevitable part of daily life. They can be found in most of the portable electronic gadgets and recently they have started powering automobiles, although the power generated is low. The efficient storage of electrical energy generated from solar cells is achieved by using suitable secondary battery systems. The development of rechargeable battery systems having excellent charge storage capacity, cyclability, environmental friendliness and flexibility has yet to be realized in practice. Rechargeable Li-ion cells employing cathode active materials like LiCoO2, LiMn2O4, LiFePO4 have got remarkable charge storage capacity with least charge leakage when not in use. However, material toxicity, chance of cell explosion and lack of effective cell recycling mechanism pose significant risk factors which are to be addressed seriously. These cells also lack flexibility in their design due to the structural characteristics of the electrode materials. Global research is directed towards identifying new class of electrode materials with less risk factors and better structural stability and flexibility. Polymer based electrode materials with inherent flexibility, stability and eco-friendliness can be a suitable choice. One of the prime drawbacks of polymer based cathode materials is the low electronic conductivity. Hence the real task with this class of materials is to get better electronic conductivity with good electrical storage capability. Electronic conductivity can be enhanced by using proper dopants. In the designing of rechargeable Li-ion cells with polymer based cathode active materials, the key issue is to identify the optimum lithiation of the polymer cathode which can ensure the highest electronic conductivity and specific charge capacity possible The development of conducting polymer based rechargeable Li-ion cells with high specific capacity and excellent cycling characteristics is a highly competitive area among research and development groups, worldwide. Polymer based rechargeable batteries are specifically attractive due to the environmentally benign nature and the possible constructional flexibility they offer. Among polymers having electrical transport properties suitable for rechargeable battery applications, polyaniline is the most favoured one due to its tunable electrical conducting properties and the availability of cost effective precursor materials for its synthesis. The performance of a battery depends significantly on the characteristics of its integral parts, the cathode, anode and the electrolyte, which in turn depend on the materials used. Many research groups are involved in developing new electrode and electrolyte materials to enhance the overall performance efficiency of the battery. Currently explored electrolytes for Li ion battery applications are in liquid or gel form, which makes well-defined sealing essential. The use of solid electrolytes eliminates the need for containment of liquid electrolytes, which will certainly simplify the cell design and improve the safety and durability. The other advantages of polymer electrolytes include dimensional stability, safety and the ability to prevent lithium dendrite formation. One of the ultimate aims of the present work is to realize all solid state, flexible and environment friendly Li-ion cells with high specific capacity and excellent cycling stability. Part of the present work is hence focused on identifying good polymer based solid electrolytes essential for realizing all solid state polymer based Li ion cells.The present work is an attempt to study the versatile roles of polyaniline in two different fields of technological applications like nonlinear optics and energy storage. Conducting form of doped PANI films with good extent of crystallinity have been realized using a level surface assisted casting method in addition to the generally employed technique of spin coating. Metal nanoparticles embedded PANI offers a rich source for nonlinear optical studies and hence gold and silver nanoparticles have been used for making the nanocomposites in bulk and thin film forms. These PANI nanocomposites are found to exhibit quite dominant third order optical non-linearity. The highlight of these studies is the observation of the interesting phenomenon of the switching between saturable absorption (SA) and reverse saturable absorption (RSA) in the films of Ag/PANI and Au/PANI nanocomposites, which offers prospects of applications in optical switching. The investigations on the energy storage prospects of PANI were carried out on Li enriched PANI which was used as the cathode active material for assembling rechargeable Li-ion cells. For Li enrichment or Li doping of PANI, n-Butyllithium (n-BuLi) in hexanes was used. The Li doping as well as the Li-ion cell assembling were carried out in an argon filled glove box. Coin cells were assembled with Li doped PANI with different doping concentrations, as the cathode, LiPF6 as the electrolyte and Li metal as the anode. These coin cells are found to show reasonably good specific capacity around 22mAh/g and excellent cycling stability and coulombic efficiency around 99%. To improve the specific capacity, composites of Li doped PANI with inorganic cathode active materials like LiFePO4 and LiMn2O4 were synthesized and coin cells were assembled as mentioned earlier to assess the electrochemical capability. The cells assembled using the composite cathodes are found to show significant enhancement in specific capacity to around 40mAh/g. One of the other interesting observations is the complete blocking of the adverse effects of Jahn-Teller distortion, when the composite cathode, PANI-LiMn2O4 is used for assembling the Li-ion cells. This distortion is generally observed, near room temperature, when LiMn2O4 is used as the cathode, which significantly reduces the cycling stability of the cells.
Resumo:
This thesis consists of 4 main parts: (1) impact of growing maize on the decomposition of incorporated fresh alfalfa residues, (2) relationships between soil biological and other soil properties in saline and alkaline arable soils from the Pakistani Punjab, (3) decomposition of compost and plant residues in Pakistani soils along a gradient in salinity, and (4) interactions of compost and triple superphosphate on the growth of maize in a saline Pakistani soil. These 4 chapters are framed by a General Introduction and a Conclusions section. (1) In the first study, the effects of growing maize plants on the microbial decomposition of freshly chopped alfalfa residues was investigated in a 90-day pot experiment using a sandy arable soil. Assuming that the addition of alfalfa residues did not affect the decomposition of native soil organic matter, only 27% of the alfalfa residues were found as CO2. This suggests that a considerable part of alfalfa-C remained undecomposed in the soil. However, only 6% of the alfalfa residues could be recovered as plant remains in treatment with solely alfalfa residues. Based on d13C values, it was calculated that plant remains in treatment maize + alfalfa residues contained 14.7% alfalfa residues and 85.3% maize root remains. This means 60% more alfalfa-C was recovered in this treatment. (2) In the second study, the interactions between soil physical, soil chemical and soil biological properties were analysed in 30 Pakistani soils from alkaline and saline arable sites differing strongly in salinisation and in soil pH. The soil biological properties were differentiated into indices for microbial activity, microbial biomass, and community structure with the aim of assessing their potential as soil fertility indices. (3) In the third study, 3 organic amendments (compost, maize straw and pea straw) were added to 5 Pakistani soils from a gradient in salinity. Although salinity has depressive effects on microbial biomass C, biomass N, biomass P, and ergosterol, the clear gradient according to the soil salt concentration was not reflected by the soil microbial properties. The addition of the 3 organic amendments always increased the contents of the microbial indices analysed. The amendment-induced increase was especially strong for microbial biomass P and reflected the total P content of the added substrates. (4) The fourth study was greenhouse pot experiment with different combinations of compost and triple superphosphate amendments to investigate the interactions between plant growth, microbial biomass formation and compost decomposition in a strongly saline Pakistani arable soil in comparison to a non-saline German arable soil. The Pakistani soil had a 2 times lower content of ergosterol, a 4 times lower contents of microbial biomass C, biomass N and biomass P, but nearly a 20 times lower content of NaHCO3 extractable P. The addition of 1% compost always had positive effects on the microbial properties and also on the content of NaHCO3 extractable P. The addition of superphosphate induced a strong and similar absolute increase in microbial biomass P in both soils.
Resumo:
The use of crop residues (CR) has been widely reported as a means of increasing crop yields across West Africa. However, little has been done to compare the magnitude and mechanisms of CR effects systematically in the different agro-ecological zones of the region. To this end, a series of field trials with millet (Pennisetum glaucum L.), sorghum [Sorghum bicolor (L.) Moench], and maize (Zea mays L.) was conducted over a 4-yr period in the Sahelian, Sudanian, and Guinean zones of West Africa. Soils ranged in pH from 4.1 to 5.4 along a rainfall gradient from 510 to 1300 mm. Treatments in the factorial experiments were three CR rates (0,500, and 2000 kg ha^-1)and several levels of phosphorus and nitrogen. The results showed CR-induced total dry matter (TDM) increases in cereals up to 73% for the Sahel compared with a maximum of 16% in the wetter Sudanian and Guinean zones. Residue effects on weakly buffered Sahelian soils were due to improved P availability and to a protection of seedlings against wind erosion. Additional effects of CR mulching on topsoil properties in the Sahel were a decrease in peak temperatures by 4°C and increased water availability. These mulch effects on soil chemical and physical properties strongly decreased from North to South. Likely explanations for this decrease are the decline of dust deposition and wind erosion hazards, the higher soil clay content, lower air temperature, and a faster decomposition rate of mulch material with increasing rainfall from the Sahel to the Sudanian and Guinean zones.
Resumo:
Research on soil fertility management in sub-Saharan Africa was criticized lately for largely ignoring farmers’ management strategies and the underlying principles. To fill this gap of knowledge, detailed interviews were conducted with 108 farm households about their rationale in managing the soil fertility of 307 individual fields in the agro-pastoral village territory of Chikal in western Niger. To amplify the farmers’ information on manuring and corralling practices, repeated measurements of applied amounts of manure were carried out within six 1-km^2 monitoring areas from February to October 1998. The interviews revealed that only 2% of the fields were completely fallowed for a period of 1–15 years, but 40% of the fields were at least partially fallowed. Mulching of crop residues was mainly practiced to fight wind erosion but was restricted to 36% of the surveyed fields given the alternative use of straw as livestock feed. Manure application and livestock corralling, as most effective tools to enhance soil fertility, were targeted to less than 30% of the surveyed fields. The application of complete fallow and manuring and corralling practices were strongly related to the households’ endowment with resources, especially with land and livestock. Within particular fields, measures were mainly applied to spots of poor soil fertility, while the restoration of the productivity of hard pans was of secondary importance. Given the limited spatial coverage of indigenous soil fertility measures and their strong dependence on farmers’ wealth, supplementary strategies to restrict the decline of soil fertility in the drought prone areas of Niger with their heavily weathered soils are needed.
Resumo:
Urban environmental depletion has been a critical problem among industrialized-transformed societies, especially at the local level where administrative authorities’ capacity lags behind changes. Derived from governance concept, the idea of civil society inclusion is highlighted. Focusing on an agglomerated case study, Bang Plee Community in Thailand, this research investigates on a non-state sector, 201-Community organization, as an agent for changes to improve urban environments on solid waste collection. Two roles are contested: as an agent for neighborhood internal change and as an intermediary toward governance changes in state-civil society interaction. By employing longitudinal analysis via a project intervention as research experiment, the outcomes of both roles are detected portrayed in three spheres: state, state-civil society interaction, and civil society sphere. It discovers in the research regarding agglomerated context that as an internal changes for environmental betterment, 201-Community organization operation brings on waste reduction at the minimal level. Community-based organization as an agent for changes – despite capacity input it still limited in efficiency and effectiveness – can mobilize fruitfully only at the individual and network level of civil society sectors, while fails managing at the organizational level. The positive outcomes result by economic waste incentive associated with a limited-bonded group rather than the rise of awareness at large. As an intermediary agent for shared governance, the community-based organization cannot bring on mutual dialogue with state as much as cannot change the state’s operation arena of solid waste management. The findings confine the shared governance concept that it does not applicable in agglomerated locality as an effective outcome, both in terms of being instrumental toward civil society inclusion and being provocative of internal change. Shared environmental governance as summarized in this research can last merely a community development action. It distances significantly from civil society inclusion and empowerment. However, the research proposes that community-based environmental management and shared governance toward civil society inclusion in urban environmental improvement are still an expectable option and reachable if their factors and conditions of key success and failure are intersected with a particular context. Further studies demand more precise on scale, scope, and theses factors of environmental management operation operated by civil society sectors.
Resumo:
Spiro-starburst-structures with symmetric globular structures in forms of first and second generations that readily form stable amorphous glasses have been synthesized and then characterised in this work. During the synthesis of these materials, possibilities of the extension of the chains of the phenyl rings in 2,2’,7 and 7’-positions of the central core of the spirobifluorene as well as the 2’,7 and 7’-positions of the terminal spirobifluorene units of the spiro-starburst-structures have been investigated so that solubilities and morphologies of the compounds are not negatively influenced. Their morphological properties have been explored by recording their decomposition temperature and glass transition temperature. These compounds possessing two perpendicular arrangement of the two molecular halves show high glass transition temperature (Tg), which is one of the most important parameter indicating the stability of the amorphous state of the material for optoelectronic devices like organic light emitting diodes. Within the species of second generation compounds, for example, 4-spiro3 shows the highest Tg (330 °C) and the highest branching degree. When one [4B(SBF)SBF-SBF 84] or two [4SBFSBF-SBF 79] terminal spirobifluorene units are removed, the Tg decreases to 318 °C and 307 °C respectively. Photo absorption and fluorescence spectra and cyclic voltammetry measurements are taken in account to characterize the optoelectronic properties of the compounds. Spiro-starburst-structures emit radiation in the blue region of the visible spectrum. The peak maxima of absorption and emission spectra are observed to be at higher wavelength in the molecules with longer chromophore chains than in the molecules with shorter chromophore chains. Excitation spectra are monitored with their emission peak maxima. The increasing absorbing species in molecule leads to increasing molar extinction coefficient. In the case of 4B(TP)SBF-SBF 53 and 4B(SBF)SBF-SBF 84, the greater values of the molar extinction coefficients (43*104 and 44*104 L mol-1 cm-1 respectively) are the evidences of the presence of four times octiphenyl conjugation rings and eight times terminal fluorene units respectively. The optical properties of solid states of these compounds in the form of thin film indicate that the intermolecular interaction and aggregation of individual molecules in neat amorphous films are effectively hindered by their sterically demanding structures. Accordingly, in solid state, they behave like isolated molecules in highly dilute solution. Cyclic voltammetry measurements of these compounds show electrochemically reversibility and stability. Furthermore, the zeolitic nature (host-guest) of the molecular sieve of the synthesized spiro-starburst-structures has been analysed by thermogravimetric analysis method.
Resumo:
Type and rate of fertilizers influence the level of soil organic carbon (Corg) and total nitrogen (Nt) markedly, but the effect on C and N partitioning into different pools is open to question. The objectives of the present work were to: (i) quantify the impact of fertilizer type and rate on labile, intermediate and passive C and N pools by using a combination of biological, chemical and mathematical methods; (ii) explain previously reported differences in the soil organic matter (SOM) levels between soils receiving farmyard manure with or without biodynamic preparations by using Corg time series and information on SOM partitioning; and (iii) quantify the long-term and short-term dynamics of SOM in density fractions and microbial biomass as affected by fertilizer type and rate and determine the incorporation of crop residues into labile SOM fractions. Samples were taken from a sandy Cambisol from the long-term fertilization trial in Darmstadt, Germany, founded in 1980. The nine treatments (four field replicates) were: straw incorporation plus application of mineral fertilizer (MSI) and application of rotted farmyard manure with (DYN) or without (FYM) addition of biodynamic preparations, each at high (140 – 150 kg N ha-1 year-1; MSIH, DYNH, FYMH), medium (100 kg N ha-1 year-1; MSIM, DYNM, FYMM) and low (50 – 60 kg N ha-1 year-1; MSIL, DYNL, FYML) rates. The main findings were: (i) The stocks of Corg (t ha-1) were affected by fertilizer type and rate and increased in the order MSIL (23.6), MSIM (23.7), MSIH (24.2) < FYML (25.3) < FYMM (28.1), FYMH (28.1). Stocks of Nt were affected in the same way (C/N ratio: 11). Storage of C and N in the modelled labile pools (turnover times: 462 and 153 days for C and N, respectively) were not influenced by the type of fertilizer (FYM and MSI) but depended significantly (p ≤ 0.05) on the application rate and ranged from 1.8 to 3.2 t C ha 1 (7 – 13% of Corg) and from 90 to 140 kg N ha-1 (4-5% of Nt). In the calculated intermediate pool (C/N ratio 7), stocks of C were markedly higher in FYM treatments (15-18 t ha-1) compared to MSI treatments (12-14 t ha-1). This showed that differences in SOM stocks in the sandy Cambisol induced by fertilizer rate may be short-lived in case of changing management, but differences induced by fertilizer type may persist for decades. (ii) Crop yields, estimated C inputs (1.5 t ha-1 year-1) with crop residue, microbial bio¬mass C (Cmic, 118 – 150 mg kg-1), microbial biomass N (17 – 20 mg kg-1) and labile C and N pools did not differ significantly between FYM and DYN treatments. However, labile C increased linearly with application rate (R2 = 0.53) from 7 to 11% of Corg. This also applied for labile N (3.5 to 4.9% of Nt). The higher contents of Corg in DYN treatments existed since 1982, when the first sampling was conducted for all individual treatments. Contents of Corg between DYN and FYM treatments con-verged slightly since then. Furthermore, at least 30% of the difference in Corg was located in the passive pool where a treatment effect could be excluded. Therefore, the reported differences in Corg contents existed most likely since the beginning of the experiment and, as a single factor of biodynamic agriculture, application of bio-dynamic preparations had no effect on SOM stocks. (iii) Stocks of SOM, light fraction organic C (LFOC, ρ ≤ 2.0 g cm-3), light fraction organic N and Cmic decreased in the order FYMH > FYML > MSIH, MSIL for all sampling dates in 2008 (March, May, September, December). However, statistical significance of treatment effects differed between the dates, probably due to dif-ferences in the spatial variation throughout the year. The high proportion of LFOC on total Corg stocks (45 – 55%) highlighted the importance of selective preservation of OM as a stabilization mechanism in this sandy Cambisol. The apparent turnover time of LFOC was between 21 and 32 years, which agreed very well with studies with substantially longer vegetation change compared to our study. Overall, both approaches; (I) the combination of incubation, chemical fractionation and simple modelling and (II) the density fractionation; provided complementary information on the partitioning of SOM into pools of different stability. The density fractionation showed that differences in Corg stocks between FYM and MSI treatments were mainly located in the light fraction, i.e. induced by higher recalcitrance of the organic input in the FYM treatments. Moreover, the use of the combination of biological, chemical and mathematical methods indicated that effects of fertilizer rate on total Corg and Nt stocks may be short-lived, but that the effect of fertilizer type may persist for longer time spans in the sandy Cambisol.
Resumo:
The regional population growth in West Africa, and especially its urban centers, will bring about new and critical challenges for urban development policy, especially in terms of ensuring food security and providing employment for the growing population. (Peri-) urban livestock and vegetable production systems, which can contribute significantly to these endeavours, are limited by various constraints, amongst them limited access to expensive production factors and their (in)efficient use. To achieve sustainable production systems with low consumer health risks, that can meet the urban increased demand, this doctoral thesis determined nutrient use efficiencies in representative (peri-) urban livestock production systems in three West African cities, and investigated potential health risks for consumers ensuing from there. The field study, which was conducted during July 2007 to December 2009, undertook a comparative analysis of (peri-) urban livestock production strategies across 210 livestock keeping households (HH) in the three West African cities of Kano/Nigeria (84 HH), Bobo Dioulasso/Burkina Faso (63 HH) and Sikasso/Mali (63 HH). These livestock enterprises were belonging to the following three farm types: commercial gardening plus field crops and livestock (cGCL; 88 HH), commercial livestock plus subsistence field cropping (cLsC; 109 HH) and commercial gardening plus semi-commercial livestock (cGscL; 13 HH) which had been classified in a preceding study; they represented the diversity of (peri-) urban livestock production systems in West Africa. In the study on the efficiency of ruminant livestock production, lactating cowsand sheep herd units were differentiated based on whether feed supplements were offered to the animals at the homestead (Go: grazing only; Gsf: mainly grazing plus some supplement feeding). Inflows and outflows of nutrients were quantified in these herds during 18 months, and the effects of seasonal variations in nutrient availability on animals’ productivity and reproductive performance was determined in Sikasso. To assess the safety of animal products and vegetables, contamination sources of irrigated lettuce and milk with microbiological contaminants, and of tomato and cabbage with pesticide residues in (peri-) urban agriculture systems of Bobo Dioulasso and Sikasso were characterized at three occasions in 2009. Samples of irrigation water, organic fertilizer and ix lettuce were collected in 6 gardens, and samples of cabbage and tomato in 12 gardens; raw and curdled milk were sampled in 6 dairy herds. Information on health risks for consumers of such foodstuffs was obtained from 11 health centers in Sikasso. In (peri-) urban livestock production systems, sheep and goats dominated (P<0.001) in Kano compared to Bobo Dioulasso and Sikasso, while cattle and poultry were more frequent (P<0.001) in Bobo Dioulasso and Sikasso than in Kano. Across cities, ruminant feeding relied on grazing and homestead supplementation with fresh grasses, crop residues, cereal brans and cotton seed cake; cereal grains and brans were the major ingredients of poultry feeds. There was little association of gardens and livestock; likewise field cropping and livestock were rarely integrated. No relation existed between the education of the HH head and the adoption of improved management practices (P>0.05), but the proportion of HH heads with a long-term experience in (peri-) urban agriculture was higher in Kano and in Bobo Dioulasso than in Sikasso (P<0.001). Cattle and sheep fetched highest market prices in Kano; unit prices for goats and chicken were highest in Sikasso. Animal inflow, outflow and dairy herd growth rates were significantly higher (P<0.05) in the Gsf than in the Go cattle herds. Maize bran and cottonseed expeller were the main feeds offered to Gsf cows as dry-season supplement, while Gsf sheep received maize bran, fresh grasses and cowpea pods. The short periodic transhumance of Go dairy cows help them maintaining their live weight, whereas Gsf cows lost weight during the dry season despite supplement feeding at a rate of 1506 g dry matter per cow and day, resulting in low productivity and reproductive performance. The daily live weight gains of calves and lambs, respectively, were low and not significantly different between the Go and the Gsf system. However, the average live weight gains of lambs were significantly higher in the dry season (P<0.05) than in the rainy season because of the high pressure of gastrointestinal parasites and of Trypanosoma sp. In consequence, 47% of the sheep leaving the Go and Gsf herds died due to diseases during the study period. Thermo-tolerant coliforms and Escherichia coli contamination levels of irrigation water significantly exceeded WHO recommendations for the unrestricted irrigation of vegetables consumed raw. Microbial contamination levels of lettuce at the farm gate and the market place in Bobo Dioulasso and at the farm gate in Sikasso were higher than at the market place in Sikasso (P<0.05). Pesticide residues were detected in only one cabbage and one tomato sample and were below the maximum residue limit for consumption. Counts of thermo-tolerant coliforms and Escherichia coli were higher in curdled than in raw milk (P<0.05). From 2006 to x 2009, cases of diarrhea/vomiting and typhoid fever had increased by 11% and 48%, respectively, in Sikasso. For ensuring economically successful and ecologically viable (peri-) urban livestock husbandry and food safety of (peri-) urban foodstuffs of animal and plant origin, the dissemination and adoption of improved feeding practices, livestock healthcare and dung management are key. In addition, measures fostering the safety of animal products and vegetables including the appropriate use of wastewater in (peri-) urban agriculture, restriction to approve vegetable pesticides and the respect of their latency periods, and passing and enforcement of safety laws is required. Finally, the incorporation of environmentally sound (peri-) urban agriculture in urban planning by policy makers, public and private extension agencies and the urban farmers themselves is of utmost importance. To enable an efficient (peri-) urban livestock production in the future, research should concentrate on cost-effective feeding systems that allow meeting the animals’ requirement for production and reproduction. Thereby focus should be laid on the use of crop-residues and leguminous forages. The improvement of the milk production potential through crossbreeding of local cattle breeds with exotic breeds known for their high milk yield might be an accompanying option, but it needs careful supervision to prevent the loss of the local trypanotolerant purebreds.
Resumo:
Extensive grassland biomass for bioenergy production has long been subject of scientific research. The possibility of combining nature conservation goals with a profitable management while reducing competition with food production has created a strong interest in this topic. However, the botanical composition will play a key role for solid fuel quality of grassland biomass and will have effects on the combustion process by potentially causing corrosion, emission and slagging. On the other hand, botanical composition will affect anaerobic digestibility and thereby the biogas potential. In this thesis aboveground biomass from the Jena-Experiment plots was harvested in 2008 and 2009 and analysed for the most relevant chemical constituents effecting fuel quality and anaerobic digestibility. Regarding combustion, the following parameters were of main focus: higher heating value (HHV), gross energy yield (GE), ash content, ash softening temperature (AST), K, Ca, Mg, N, Cl and S content. For biogas production the following parameters were investigated: substrate specific methane yield (CH4 sub), area specific methane yield (CH4 area), crude fibre (CF), crude protein (CP), crude lipid (CL) and nitrogen-free extract (NfE). Furthermore, an improvement of the fuel quality was investigated through applying the Integrated generation of solid Fuel and Biogas from Biomass (IFBB) procedure. Through the specific setup of the Jena-Experiment it was possible to outline the changes of these parameters along two diversity gradients: (i) species richness (SR; 1 to 60 species) and (ii) functional group (grasses, legumes, small herbs and tall herbs) presence. This was a novel approach on investigating the bioenergy characteristic of extensive grassland biomass and gave detailed insight in the sward-composition¬ - bioenergy relations such as: (i) the most relevant SR effect was the increase of energy yield for both combustion (annual GE increased by 26% from SR8→16 and by 65% from SR8→60) and anaerobic digestion (annual CH4 area increased by 22% from SR8→16 and by 49% from SR8→60) through a strong interaction of SR with biomass yield; (ii) legumes play a key role for the utilization of grassland biomass for energy production as they increase the energy content of the substrate (HHV and CH4 sub) and the energy yield (GE and CH4 area); (iii) combustion is the conversion technique that will yield the highest energy output but requires an improvement of the solid fuel quality in order to reduce the risk of corrosion, emission and slagging related problems. This was achieved through applying the IFBB-procedure, with reductions in ash (by 23%), N (28%), K (85%), Cl (56%) and S (59%) and equal levels of concentrations along the SR gradient.
Resumo:
This study was conducted to investigate soil biological and chemical factors that give rise to cereal yield enhancing effects of legume rotations on sandy, nutrient poor West African soils. The aim was not only to gain more information on the role of legume residues and microorganisms in the soil nutrient cycle. But the study aimed at evaluating if differences in substrate qualities (e.g. root residues) cause changes in the microbial community structure due to specific and highly complex microbe-root-soil interactions. Site and system specific reactions of microorganisms towards rewetting, simulating the onset of rainy season, were observed. Higher respiration rates, higher amounts of microbial biomass carbon (Cmic) and nitrogen (Nmic) as well as higher ergosterol, muramic acid, glucosamine and adenylate concentrations were measured in CL soils of Koukombo and in both soils from Fada. The immediate increase in ATP concentrations after rewetting was likely caused by rehydration of microbial cells where N was not immobilized and, thus, available for plants facilitating their rapid development. Legume root residues led only to slightly better plant performances compared to the control, while the application of cereal roots reduced seedling growth. In contrast to sorghum seedlings, the microbial community did not react to the mineral treatment. Thus the energy supply in form of organic amendments increased microbial indices compared to mineral P application and the control. The results of basal respiration rates, Cmic and Corg levels indicate that the microbial community in the soil from Koukombo is less efficient in substrate use compared to microorganisms in the soil from Fada. However, the continuous carbon input by legume root residues might have contributed to these differences in soil fertility. With the 33P isotopic exchange method a low buffering capacity was detected in both soils irrespective of treatments. Calculated E values (E1min to E1min-1d and E1d-3m) indicated a slowly release of P due to root turnover while applied mineral P is taken up by plants or fixed to the soil. Due to the fact that sorghum growth reacted mainly to the application of mineral P and the microorganisms solely to the organic inputs, the combination of both amendments seems to be the best approach to a sustainable increase of crop production on many nutrient-poor, sandy West African soils. In a pot experiment, were CC and CL soils from Fada and Koukombo were adjusted to the same level of P and N concentrations, crop growth was significantly higher on CL soils, compared to the respective treatments on CC soils. Mycorrhizal infection of roots was increased and the number of nematodes, predominantly free living nematodes, was almost halfed on rotation soils. In conclusion, increased nutrient availability (especially P and N) through the introduction of legumes is not the only reason for the observed yield increasing effects. Soil biological factors seem to also play an important role. In a root chamber experiment the pH gradient along the root-soil-interface was measured at three times using an antimony microelectrode. For Fada soils, pH values were higher on CL than CC soils while the opposite was true for the Koukombo soils. Site-specific differences between Fada and Koukombo soils in N content and microbial community structures might have created varying crop performances leading to the contrasting pH findings. However, the mechanisms involved in this highly complex microbe-root-soil interaction remain unclear.
Resumo:
A better understanding of effects after digestate application on plant community, soil microbial community as well as nutrient and carbon dynamics is crucial for a sustainable grassland management and the prevention of species and functional diversity loss. The specific research objectives of the thesis were: (i) to investigate effects after digestate application on grass species and soil microbial community, especially focussing on nitrogen dynamic in the plant-soil system and to examine the suitability of the digestate from the “integrated generation of solid fuel and biogas from biomass” (IFBB) system as fertilizer (Chapter 3). (ii) to investigate the relationship between plant community and functionality of soil microbial community of extensively managed meadows, taking into account temporal variations during the vegetation period and abiotic soil conditions (Chapter 4). (iii) to investigate the suitability of IFBB-concept implementation as grassland conservation measure for meadows and possible associated effects of IFBB digestate application on plant and soil microbial community as well as soil microbial substrate utilization and catabolic evenness (Chapter 5). Taken together the results indicate that the digestate generated during the IFBB process stands out from digestates of conventional whole crop digestion on the basis of higher nitrogen use efficiency and that it is useful for increasing harvestable biomass and the nitrogen content of the biomass, especially of L. perenne, which is a common species of intensively used grasslands. Further, a medium application rate of IFBB digestate (50% of nitrogen removed with harvested biomass, corresponding to 30 50 kg N ha-1 a-1) may be a possibility for conservation management of different meadows without changing the functional above- and belowground characteristic of the grasslands, thereby offering an ecologically worthwhile alternative to mulching. Overall, the soil microbial biomass and catabolic performance under planted soil was marginally affected by digestate application but rather by soil properties and partly by grassland species and legume occurrence. The investigated extensively managed meadows revealed a high soil catabolic evenness, which was resilient to medium IFBB application rate after a three-year period of application.
Resumo:
The demand for biomass for bioenergy has increased rapidly in industrialized countries in the recent years. Biogenic energy carriers are known to reduce CO2 emissions. However, the resource-inefficient production of biomass often caused negative impacts on the environment, e.g. biodiversity losses, nitrate leaching, and erosion. The detrimental effects evolved mainly from annual crops. Therefore, the aim of modern bioenergy cropping systems is to combine yield stability and environmental benefits by the establishment of mixed-cropping systems. A particular emphasis is on perennial crops which are perceived as environmentally superior to annual crops. Agroforestry systems represent such mixed perennial cropping systems and consist of a mix of trees and arable crops or grassland within the same area of land. Agroforestry practices vary across the globe and alley cropping is a type of agroforestry system which is well adapted to the temperate zone, with a high degree of mechanization. Trees are planted in rows and crops are planted in the alleyways, which facilitates their management by machinery. This study was conducted to examine a young alley cropping system of willows and two grassland mixtures for bioenergy provision under temperate climate conditions. The first part of the thesis identified possible competition effects between willows and the two grassland mixtures. Since light seemed to be the factor most affecting the yield performance of the understory in temperate agroforestry systems, a biennial in situ artificial shade experiment was established over a separate clover-grass stand to quantify the effects of shade. Data to possible below- and aboveground interactions among willows and the two grassland mixtures and their effects on productivity, sward composition, and quality were monitored along a tree-grassland interface within the alleys. In the second part, productivity of the alley cropping system was examined on a triennial time frame and compared to separate grassland and willow stands as controls. Three different conversion technologies (combustion of hay, integrated generation of solid fuel and biogas from biomass, whole crop digestion) were applied to grassland biomass as feedstock and analyzed for its energetic potential. The energetic potential of willow wood chips was calculated by applying combustion as conversion technique. Net energy balances of separate grassland stands, agroforestry and pure willow stands evaluated their energy efficiency. Results of the biennial artificial shade experiment showed that severe shade (80 % light reduction) halved grassland productivity on average compared to a non-shaded control. White clover as heliophilous plant responded sensitively to limited radiation and its dry matter contribution in the sward decreased with increasing shade, whereas non-leguminous forbs (mainly segetal species) benefited. Changes in nutritive quality could not be confirmed by this experiment. Through the study on interactions within the alleys of the young agroforestry system it was possible to outline changes of incident light, soil temperature and sward composition of clover-grass along the tree-grassland interface. Nearly no effects of trees on precipitation, soil moisture and understory productivity occurred along the interface during the biennial experiment. Considering the results of the productivity and the net energy yield alley cropping system had lower than pure grassland stands, irrespective of the grassland seed mixture or fertilization, but was higher than that for pure willow stands. The comparison of three different energetic conversion techniques for the grassland biomass showed highest net energy yields for hay combustion, whereas the integrated generation of solid fuel and biogas from biomass (IFBB) and whole crop digestion performed similarly. However, due to the low fuel quality of hay, its direct combustion cannot be recommended as a viable conversion technique, whereas IFBB fuels were of a similar quality to wood chip from willow.
Resumo:
Porous tin oxide nanotubes were obtained by vacuum infiltration of tin oxide nanoparticles into porous aluminum oxide membranes, followed by calcination. The porous tin oxide nanotube arrays so prepared were characterized by FE-SEM, TEM, HRTEM, and XRD. The nanotubes are open-ended, highly ordered with uniform cross-sections, diameters and wall thickness. The tin oxide nanotubes were evaluated as a substitute anode material for the lithium ion batteries. The tin oxide nanotube anode could be charged and discharged repeatedly, retaining a specific capacity of 525 mAh/g after 80 cycles. This capacity is significantly higher than the theoretical capacity of commercial graphite anode (372 mAh/g) and the cyclability is outstanding for a tin based electrode. The cyclability and capacities of the tin oxide nanotubes were also higher than their building blocks of solid tin oxide nanoparticles. A few factors accounting for the good cycling performance and high capacity of tin oxide nanotubes are suggested.
Resumo:
En las grandes ciudades, la disposición de residuos se ha convertido en un problema ambiental de magnitud mundial con impacto negativo por el manejo inadecuado de los residuos sólidos diarios. El propósito es utilizar el sistema de transporte publico de Bogotá (Transmilenio) como punto de recolección de botellas plásticas y latas, para crear un proyecto de responsabilidad ambiental el cual tendrá resultados positivos a nivel cultural, social, y a largo plazo, financieramente. A través del estudio de diferentes propuestas tanto locales como internacionales, fueron identificados los principales factores de éxito de estos proyectos los cuales se incluyeron para adecuar la presente propuesta para la ciudad de Bogotá teniendo en cuenta sus actuales condiciones. Después de identificar las características requeridas para Bogotá, se realizó un estudio demográfico para poder saber cuántos ciudadanos estarían dispuestos a participar. Como resultado, muchos pasajeros de Transmilenio esperan una retribución económica en el costo del pasaje del sistema. La prueba piloto se diseñó de acuerdo con la cantidad de envases recolectados, incluyendo el tipo de vehículos, como también la cantidad de personas y maquinas necesarias para el éxito del proyecto. Con la propuesta del proyecto completa, se realiza una evaluación financiera y económica para identificar los costos y gastos. La conclusión final de esta propuesta es que el modelo propuesto puede ser aplicado en Bogotá dadas sus características. Los beneficios sociales y ambientales también se destacan, como también el cambio cultural por parte de los ciudadanos hacia las prácticas ecológicas.
Resumo:
Una de las actuaciones posibles para la gestión de los residuos sólidos urbanos es la valorización energética, es decir la incineración con recuperación de energía. Sin embargo es muy importante controlar adecuadamente el proceso de incineración para evitar en lo posible la liberación de sustancias contaminantes a la atmósfera que puedan ocasionar problemas de contaminación industrial.Conseguir que tanto el proceso de incineración como el tratamiento de los gases se realice en condiciones óptimas presupone tener un buen conocimiento de las dependencias entre las variables de proceso. Se precisan métodos adecuados de medida de las variables más importantes y tratar los valores medidos con modelos adecuados para transformarlos en magnitudes de mando. Un modelo clásico para el control parece poco prometedor en este caso debido a la complejidad de los procesos, la falta de descripción cuantitativa y la necesidad de hacer los cálculos en tiempo real. Esto sólo se puede conseguir con la ayuda de las modernas técnicas de proceso de datos y métodos informáticos, tales como el empleo de técnicas de simulación, modelos matemáticos, sistemas basados en el conocimiento e interfases inteligentes. En [Ono, 1989] se describe un sistema de control basado en la lógica difusa aplicado al campo de la incineración de residuos urbanos. En el centro de investigación FZK de Karslruhe se están desarrollando aplicaciones que combinan la lógica difusa con las redes neuronales [Jaeschke, Keller, 1994] para el control de la planta piloto de incineración de residuos TAMARA. En esta tesis se plantea la aplicación de un método de adquisición de conocimiento para el control de sistemas complejos inspirado en el comportamiento humano. Cuando nos encontramos ante una situación desconocida al principio no sabemos como actuar, salvo por la extrapolación de experiencias anteriores que puedan ser útiles. Aplicando procedimientos de prueba y error, refuerzo de hipótesis, etc., vamos adquiriendo y refinando el conocimiento, y elaborando un modelo mental. Podemos diseñar un método análogo, que pueda ser implementado en un sistema informático, mediante el empleo de técnicas de Inteligencia Artificial.Así, en un proceso complejo muchas veces disponemos de un conjunto de datos del proceso que a priori no nos dan información suficientemente estructurada para que nos sea útil. Para la adquisición de conocimiento pasamos por una serie de etapas: - Hacemos una primera selección de cuales son las variables que nos interesa conocer. - Estado del sistema. En primer lugar podemos empezar por aplicar técnicas de clasificación (aprendizaje no supervisado) para agrupar los datos y obtener una representación del estado de la planta. Es posible establecer una clasificación, pero normalmente casi todos los datos están en una sola clase, que corresponde a la operación normal. Hecho esto y para refinar el conocimiento utilizamos métodos estadísticos clásicos para buscar correlaciones entre variables (análisis de componentes principales) y así poder simplificar y reducir la lista de variables. - Análisis de las señales. Para analizar y clasificar las señales (por ejemplo la temperatura del horno) es posible utilizar métodos capaces de describir mejor el comportamiento no lineal del sistema, como las redes neuronales. Otro paso más consiste en establecer relaciones causales entre las variables. Para ello nos sirven de ayuda los modelos analíticos - Como resultado final del proceso se pasa al diseño del sistema basado en el conocimiento. El objetivo principal es aplicar el método al caso concreto del control de una planta de tratamiento de residuos sólidos urbanos por valorización energética. En primer lugar, en el capítulo 2 Los residuos sólidos urbanos, se trata el problema global de la gestión de los residuos, dando una visión general de las diferentes alternativas existentes, y de la situación nacional e internacional en la actualidad. Se analiza con mayor detalle la problemática de la incineración de los residuos, poniendo especial interés en aquellas características de los residuos que tienen mayor importancia de cara al proceso de combustión.En el capítulo 3, Descripción del proceso, se hace una descripción general del proceso de incineración y de los distintos elementos de una planta incineradora: desde la recepción y almacenamiento de los residuos, pasando por los distintos tipos de hornos y las exigencias de los códigos de buena práctica de combustión, el sistema de aire de combustión y el sistema de humos. Se presentan también los distintos sistemas de depuración de los gases de combustión, y finalmente el sistema de evacuación de cenizas y escorias.El capítulo 4, La planta de tratamiento de residuos sólidos urbanos de Girona, describe los principales sistemas de la planta incineradora de Girona: la alimentación de residuos, el tipo de horno, el sistema de recuperación de energía, y el sistema de depuración de los gases de combustión Se describe también el sistema de control, la operación, los datos de funcionamiento de la planta, la instrumentación y las variables que son de interés para el control del proceso de combustión.En el capítulo 5, Técnicas utilizadas, se proporciona una visión global de los sistemas basados en el conocimiento y de los sistemas expertos. Se explican las diferentes técnicas utilizadas: redes neuronales, sistemas de clasificación, modelos cualitativos, y sistemas expertos, ilustradas con algunos ejemplos de aplicación.Con respecto a los sistemas basados en el conocimiento se analizan en primer lugar las condiciones para su aplicabilidad, y las formas de representación del conocimiento. A continuación se describen las distintas formas de razonamiento: redes neuronales, sistemas expertos y lógica difusa, y se realiza una comparación entre ellas. Se presenta una aplicación de las redes neuronales al análisis de series temporales de temperatura.Se trata también la problemática del análisis de los datos de operación mediante técnicas estadísticas y el empleo de técnicas de clasificación. Otro apartado está dedicado a los distintos tipos de modelos, incluyendo una discusión de los modelos cualitativos.Se describe el sistema de diseño asistido por ordenador para el diseño de sistemas de supervisión CASSD que se utiliza en esta tesis, y las herramientas de análisis para obtener información cualitativa del comportamiento del proceso: Abstractores y ALCMEN. Se incluye un ejemplo de aplicación de estas técnicas para hallar las relaciones entre la temperatura y las acciones del operador. Finalmente se analizan las principales características de los sistemas expertos en general, y del sistema experto CEES 2.0 que también forma parte del sistema CASSD que se ha utilizado.El capítulo 6, Resultados, muestra los resultados obtenidos mediante la aplicación de las diferentes técnicas, redes neuronales, clasificación, el desarrollo de la modelización del proceso de combustión, y la generación de reglas. Dentro del apartado de análisis de datos se emplea una red neuronal para la clasificación de una señal de temperatura. También se describe la utilización del método LINNEO+ para la clasificación de los estados de operación de la planta.En el apartado dedicado a la modelización se desarrolla un modelo de combustión que sirve de base para analizar el comportamiento del horno en régimen estacionario y dinámico. Se define un parámetro, la superficie de llama, relacionado con la extensión del fuego en la parrilla. Mediante un modelo linealizado se analiza la respuesta dinámica del proceso de incineración. Luego se pasa a la definición de relaciones cualitativas entre las variables que se utilizan en la elaboración de un modelo cualitativo. A continuación se desarrolla un nuevo modelo cualitativo, tomando como base el modelo dinámico analítico.Finalmente se aborda el desarrollo de la base de conocimiento del sistema experto, mediante la generación de reglas En el capítulo 7, Sistema de control de una planta incineradora, se analizan los objetivos de un sistema de control de una planta incineradora, su diseño e implementación. Se describen los objetivos básicos del sistema de control de la combustión, su configuración y la implementación en Matlab/Simulink utilizando las distintas herramientas que se han desarrollado en el capítulo anterior.Por último para mostrar como pueden aplicarse los distintos métodos desarrollados en esta tesis se construye un sistema experto para mantener constante la temperatura del horno actuando sobre la alimentación de residuos.Finalmente en el capítulo Conclusiones, se presentan las conclusiones y resultados de esta tesis.